
The Good, The Bad, and The
Dirty Calc

Executing calculations that only run on blocks that have
changed is a great feature in Essbase. It enables

administrators to calculate the database in a fraction of the
time and is referred to as calculating “dirty” blocks, or an
update calc. This is awesome. “Why shouldn’t I use it all

the time?” you might ask. Understanding how the Essbase calc
engine works is critical to answering this question.

The Essbase calc engine calculates each block in a specific
order (see figure 1). The first block it calculates is the
first level 0 block of the first sparse dimension. It then
traverses to higher levels and moves through the dimension

from top to bottom until the entire dimension is
consolidated.

When a level 0 block is changed, it and all of its parents,
are tagged as dirty (it needs to be calculated again). When a
calculation is executed on just dirty blocks, the process is
the same except that it skips all the “clean” blocks. Once
the block is calculated the dirty tag is changed to clean.

So far, so good!
Revisit figure 1, which is a very simple example. It shows a
very simple hierarchy with the order in which the blocks are

calculated, 1 through 10.
Figure 2 shows what happens if New York is updated. Blocks
5, 6, and 10 are tagged as dirty. The next calculation, if
set to calculate only the dirty blocks, would only calculate

blocks 5, 6, and 10, in that order.

https://in2epbcs.com/2009/05/20/the-good-the-bad-and-the-dirty-calc/
https://in2epbcs.com/2009/05/20/the-good-the-bad-and-the-dirty-calc/

Here is where things get a little ugly. When an application
has write access, as a planning or forecasting application
would, it is very possible that users are updating data

DURING the calculation process. The timing of these events
is critical to understand why calculating only dirty blocks

can cause inconsistencies.
When a calculation has started, it identifies which blocks
need calculated (5, 6, and 10 in this example). Immediately

after that, it starts calculating block 5. If Texas is
updated while block 5 is being calculated, what happens?

Figure 3 shows the state of the clean/dirty blocks when the
calculation is finished with block 5. It is exactly what you

might expect at this point. Blocks 6 and 10 are still
dirty. The update of Texas caused Blocks 1, 3, and 10 to be

tagged dirty.

This is the critical piece. Keep in mind how the calculation
engine works. It will continue to calculate blocks 6 and

10. Also note that the calculation running does NOT
reevaluate what needs calculated. It will not calculate

blocks 1 and 3.
Figure 4 shows the state of the blocks after the calculation

finishes. Only blocks 1 and 3 are dirty at this point
because 10 was included in the calculation.

When the next calculation is executed, the only blocks that
are dirty are 1 and 3. Can you see the problem now? After
blocks 1 and 3 are calculated, is block 10 accurate? Does

U.S. equal the total of South, East, and West?
Unfortunately, it does not.

One could argue that it will get updated the next time data
is changed. In a very simple example with 3 levels, this

would probably correct itself rather quickly, if the problem
happened at all. In a more realistic example where a company

has 10 or 20 levels in their organization dimension, the
problem is likely to be a reoccurring problem and may not be
corrected until a full calculation is executed. In most

situations, it is not acceptable to have a database where it
consolidates correctly only some of the time without any

warning that it is not accurate. Reporting can be incorrect,
and bad management decisions can result.

Using the dirty calc feature is a great tool to have in your
arsenal. It can save hours of processing time. It can make
you look like a genius. Without understanding its pitfalls,
it can be the source of countless wasted hours trying to

figure out why a cube isn’t consolidating correctly. A worst
case scenario is when a cost center manager updated their

budget, it never gets consolidated correctly, and the problem
isn’t identified until it is too late.

