
How To Maximize Excel by
Using Custom Function
Whether you play a technical role or are a financial analyst,
Excel is likely a major asset in your toolbox. Whether it is
the SUM function, the VLOOKUP function, or one of the many
others, we have all used Excel functions for a plethora of
reasons.

There is a lot of potential hidden in Excel that you may not
be aware of. Excel offers the ability to create your own user
defined functions, and it’s not hard to create them. With a
little ingenuity and strategic thinking, custom Excel
functions can be a huge asset.

Below are two examples. Neither is difficult, but they will
provide you with a taste of what you can do with custom
functions. The first example calculates a better/worse value
based on three inputs (prior period, current period, and
expense vs. revenue). The second concatenates columns
together with a user specified delimiter and the option to use
quotes around the values.

Background on Custom Functions
Custom functions are Visual Basic for Applications (VBA) code
snippets that are stored in modules in a workbook. This is
the same place macros are stored, so it may be familiar. To
open the VBA window, use ALT F11. Once the window opens,
right-click the workbook you want to add the function to in
the VBAProject window and select Insert->Module. A new window
will open named Module1. Custom functions have to be in a
module to be accessed in a workbook.

Each function has a function name, input arguments that pass
data to the function, and return a value.

https://in2epbcs.com/2011/08/23/how-to-maximize-excel-by-using-custom-function/
https://in2epbcs.com/2011/08/23/how-to-maximize-excel-by-using-custom-function/

A very simple example shows these pieces. “Test” is the
function name. “Input” is one argument passed to the
function. The function returns a numeric value, which is the
input value multiplied by ten.

Function Test(input as double) as Double
 Test=input * 10
End Function

To use this function, return to your worksheet and enter
“=Test(5)” in a cell. This function can also be found in the
Insert Function option by selecting User Defined in the Select
A Category dropdown box. The input parameter doesn’t have to
be a value. A cell reference can be used, just like any other
Excel function. The result should return 50.

Example: Better(Worse) Calculation
For you finance folks, you will almost always have a
better/worse calculation in a spreadsheet that compares two
periods. For revenue, the current period is subtracted from
the prior period. For expense, it is the inverse.

To accomplish this, we will have a function with 4
parameters.

Prior Period1.
Current Period2.
Whether the numbers being evaluated should be calculated3.
as an expense or revenue
Whether the result returned is in the form of a dollar4.
value or percentage change

Function BetterWorse(Prior_Period As Double, Current_Period As
Double, Expense As Boolean, Return_Dollar As Boolean) As
Double
 If Expense = True Then 'Calculate as an expense
 If Return_Dollar = True Then 'Return a dollar value
 BetterWorse = Prior_Period - Current_Period
 Else 'Return a percentage

 BetterWorse = (Prior_Period - Current_Period) /
Prior_Period
 End If
 Else 'Calculate as a revenue
 If Return_Dollar = True Then 'Return a percentage
 BetterWorse = Current_Period - Prior_Period
 Else 'Return a percentage
 BetterWorse = (Current_Period - Prior_Period) /
Current_Period
 End If
 End If
End Function

Below is an example of this function being used. The result
of the custom function resides in column D and E. Revenue is
lower in the current year, resulting in a negative variance.
 Expenses are also lower, but result in a positive variance.

The formulas that exist in columns D and E are as follows.

Example: Concatenation
The need to create a delimited file from Excel is very
common. The problem with doing this is that the entire
worksheet is extracted. If the worksheet had data in rows or
columns that are now blank, Excel still exports those blank
cells. One way to overcome this is to create a function that

concatenates a range into one cell. Then, the concatenated
values can be copied and pasted to a text file. Many times
this is very handy. This can obviously be done with a cell
formula, but gets time consuming to create when many cells are
required. It is further complicated when quotes around the
fields are necessary.

Function ConcatForExport(InRange As Range, Delimiter As
String, UseQuotes As Boolean) As String
 Dim TheCount As Integer
 TheCount = 0
 For Each cell In InRange
 If TheCount = 0 Then
 If UseQuotes = True Then
 strString = Chr(34) & cell.Value & Chr(34)
 Else
 strString = cell.Value
 End If
 Else
 If UseQuotes = True Then
 strString = strString & Delimiter & Chr(34) &
cell.Value & Chr(34)
 Else
 strString = strString & Delimiter & cell.Value
 End If
 End If
 TheCount = TheCount 1
 Next cell
 ConcatForExport = strString
End Function

To expand on the variance example above, an additional column
has been added to show the use of this function. Each row
passes different parameters. Columns B through E are
concatenated together into one cell. The delimiter is altered
in row 5, and no quotes are around the value in row 4.

The corresponding formulas are below.

There are a wealth of opportunities that open up using custom
functions. Adding functionality and automating tasks like the
examples above are just the start of what can be done.

