
Why is my database growing?
It’s killing my calc times!
There are times when planning and forecasting databases grow
for apparently no reason at all. The static data (YTD actuals)
that is loaded hasn’t changed and the users say they aren’t
doing anything different.

If you load budgets or forecasts to Essbase, you probably do
what I’m about to tell you. If you are a systems administrator
and have never seen how finance does a budget or forecast,
this might be an education.

The culprit? More data!

Budgets and forecasts are not always completed at the bottom
of the hierarchy and rolled up. I don’t mean technically, as
you might be thinking, Yes they do, they load to level 0
members and it gets consolidated up the outline. When it comes
to budgets and forecasts, they are largely done in a top down
approach. What this means is that finance is given a goal, or
number, they have to hit, and they have to PUSH it down to
lower business groups. The way a financial analyst creates a
top-down budget, many times, is to allocate a value based on a
metric, like headcount or sales.

Assume a budget for desktop support services is required.
Let’s say management has mandated that the expense doesn’t
grow from last year. Since this cost is to support the people
in the business, the expense is divided by the expected
headcount and allocated evenly. If a business unit has 20% of
the people, that unit will get 20% of the expense. Since the
expense to be allocated isn’t going to change, but the
headcount will, the following will be the result:

Because the analyst doesn’t want to worry about missing any
changes to the headcount forecast, he or she will create a

https://in2epbcs.com/2011/10/02/why-is-my-database-growing-itos-killing-my-calc-times/
https://in2epbcs.com/2011/10/02/why-is-my-database-growing-itos-killing-my-calc-times/

data retrieve with headcount for every cost center, whether it
has headcount or not. A lock and send sheet now takes the
percentage of headcount each cost center has and multiplies
that factor by the total expense. As headcount gets re-
forecasted, this expense has to be reallocated. With this
methodology, all the user has to do is retrieve the sheet with
all the headcount forecast. The math does the allocation and
the result is sent back to the database.

Easy, right?
This makes a ton of sense for an accurate forecast or budget
with minimal effort. Not so fast, as this has two major flaws.

First, the volume of data loaded may be drastically higher
than it needs to be. Assume the worksheet has 500 cost centers
(500 rows). If half of these have no headcount, there are an
additional 250 blocks created that hold zeros (assuming the
cost center/organization hierarchy is sparse). This method,
although very efficient for updating the numbers for the
analyst when headcount changes, is causing the database to
grow substantially. In this isolated example, there is twice
as much data than is required.

Secondly, since the data has to be loaded at level 0, the
analyst thinks loading at every cost center is a requirement.
The materiality of the data at this level is often irrelevant.
Let’s say that the analyst is really forecasting at the
region, but loading data at the cost center because it is
required to be loaded at level 0. Assume there are 10 regions
in which these 500 cost centers exist. A forecast at the 250
cost centers that have headcount is not required. The forecast
only needs to be loaded for 10 cost centers, one for each
region. If this method were used, we would only create 10
blocks, rather than the 250, or 500 originally. When the
system has hundreds of users, and thousands of accounts, you
can see how the size of the database would grow substantially.
This also provides no additional value and huge performance

problems. In the example above, the number of blocks can be
reduced from 500 to 10. It is far quicker to calculate 10
blocks than 500.

Even if the data needs to be at the cost center, many times
the allocation is so small, the result of the allocation is
pennies, or dollars. You would be hard-pressed to find a
budget where a few dollars is material. In situations like
this, the users have to ask themselves if the detail is worth
the performance impact.

Users, Help Yourselves
Educate your users and co-workers on the impacts of performing
these types of allocations. If loading data at every cost
center is required, change your formula. Rather than
calculating the expense as

=headcount / total headcount * Total Expense

add an IF statement so when the retrieve has no headcount, the
calculation produces a #MI,

rather than a 0. This would be more efficient

=IF(headcount=0,”#MI”, headcount / total headcount * Total
Expense)

If this is not necessary, change the way the data is loaded.
Rather than picking all the cost centers, retrieve the
headcount from the regions and build the send template to load
to one cost center for each region.

The Real World
I worked for a large financial institution with a 100 Billion
dollar budget. More than 70% of all the data was less than 10
dollars, and 30% was equal to zero! The budget was never
looked at below region, which was 4 levels deep in an
organization hierarchy that included more than 30,000 cost

centers.

After consolidating the insignificant data and educating the
users, the calc times decreased from 50 minutes to less than
5. All aspects of performance were better.

Easily Find Out How This is Impacting
Your Application
There are a lot of ways to see if this phenomenon impacts your
database. If the database is small, the export could be loaded
to Excel. With some basic IF statements, the number of cells
that were higher or lower than an identified threshold could
be determined. Because I regularly work in a lot of different
environments with large amounts of data, I wrote an
application to traverse through an Essbase export to produce
statistics on the data. The application is attached for
download. Make sure you have the .NET libraries installed or
this will not execute. Version 3.5 or higher is required, and
can be found by searching download .net framework. There is a
good chance it is already installed.

This is a simple application that I developed quickly to help
me understand the degree to which a database is impacted by
the example explained above. It will traverse through roughly
25,000 lines every second, and will provide the following
metrics:

the number and percentage of values above a threshold
entered
the number and percentage of values below a threshold
entered
the number and percentage of values that are 0
the number and percentage of values that are #Missing,
or Null
The number of lines in the export and the number of
seconds it took to process

http://www.google.com/search?client=safari&rls=en&q=download .net framework&ie=UTF-8&oe=UTF-8

To use this, export the database at level 0 and choose column
format. You will be prompted for the path and file name of the
export, and the threshold to evaluate.

Download Essbase Export Analysis, and give it a try.

http://www.in2hyperion.com/wp-content/uploads/2019/02/Essbase-Export-Analysis.zip

