
Meet XWRITE, XREF’s New Big
Brother
The introduction of Hyperion 11.1.2 has some fantastic
improvements. Many of these have been long awaited. The next
few articles on In2Hyperion will describe some of the
enhancements to Hyperion Planning, Hyperion Essbase, and
Hyperion SmartView.

XREF Background
If you have been developing Planning applications, you are
probably very familiar with the XREF function. This function
is used in business rules, calculation scripts, and member
formulas. It provides a method to move data from one plan
type (Essbase database) to another plan type. It is executed
from the target database and pulls the data from the source.
XWRITE was actually introduced in later versions of 11.1.1.x,
but is very stable in 11.1.2.x. XWRITE is executed from the
source and pushes data to the target. This function is a huge
improvement over XREF.

XREF will copy data to a target database and must be executed
from the target database. The function pulls data rather than
pushing it. This causes two challenges. Normally, the data
is entered in the source database and is copied to the
destination database. When a Planning web form is saved, it
can only execute a calculation on the database the web form is
connected to (at least in older version – stay tuned). This
means an XREF function cannot be used when the form is saved.
The user has to go to another form, or execute a business rule
manually, for the data to move.

https://in2epbcs.com/2012/05/02/xwrite_xref/
https://in2epbcs.com/2012/05/02/xwrite_xref/

The larger issue with XREF is accounting for block creation.
Remember, XREF pulls data from a source. The destination may
not have blocks that exist where the data will reside. XREF
does NOT account for the creation of the blocks if blocks
don’t exist. XREF must be used in conjunction with the
CREATEBLOCKONEQUATION setting. This is acceptable when fixing
on very finite levels of data, but execution on larger amounts
of data results in an extremely slow data movement process.
Essbase is responsible for the slow data movement process
because it traverses all possible sparse member combinations
to validate existence of data on the source. Normally, data
exists at a very small percentage of the possible blocks. In
addition to the slow data movement process, it’s worth noting
that the XREF function can also create blocks in your database
which are unnecessary; ultimately increasing the size and
decreasing the speed of your application.

Welcome to XWRITE
XWRITE is the opposite of XREF. Rather than using XREF to
pull the data from the target, XWRITE enables you to push data
from the source. Pushing data resolves the issues which XREF
creates.

When XWRITE is executed from a web form, thus pushing data
from the source to the target, there’s no longer a need to
account for this process with two web forms or the manual
execution of a business rule.

Since XWRITE is executed from the source, there’s no longer a
need for looking at every possible sparse member combination
on the target. Using a FIX statement enables Essbase to
decipher which blocks need to be copied, removing the
guesswork and subsequently the requirement of
CREATEBLOCKONEQUATION. Utilizating the XWRITE function results
in faster processing and efficient block creation.

Prior to XWRITE, my preferred method of data movement involved
exports from the source and imports to the target; thus
eliminating the need for the XREF function. The introduction
of XWRITE has reduced the need for a data export/import
process.

