
Debunk The Myth: Never Fix On
Dense Members
The generic rule in Essbase is that calculations FIX on sparse
members because sparse members are what define the number of
blocks. When you want to limit the members of the block on
which the calculation is executed, an IF statement is
appropriate.

Quick Overview of Dense and Sparse
If you are unfamiliar with the concept of dense and sparse,
here is a quick overview. A data block in Essbase is
constructed from the dense dimensions of the database. The
number of members in each dense dimension impacts the size of
each data block. The combination of a member in each sparse
dimension is what defines a block. The number of members in
the sparse dimensions directly correlates to the number of
blocks that may exist.

For a more detailed overview, reference Sparse, Dense, and
Blocks For Dummies.

Comparison To Relational Database
A FIX is a lot like a SELECT statement in a relational
database using a WHERE clause. The WHERE clause limits the
number of records, an Essbase FIX limits the number of blocks
for which an action is taken. An IF statement in Essbase is
similar to a CASE statement in a relational database in that
it executes on all the records and acts only when a criteria
is met.

Limiting the records

Relational Example

https://in2epbcs.com/2013/09/23/debunk-the-myth-always-fix-on-dense-members/
https://in2epbcs.com/2013/09/23/debunk-the-myth-always-fix-on-dense-members/
http://www.in2hyperion.com/post/2009/08/05/Sparse-Dense-and-Blocks-For-Dummies.aspx
http://www.in2hyperion.com/post/2009/08/05/Sparse-Dense-and-Blocks-For-Dummies.aspx

UPDATE table_name
SET Salary=Annual Salary * Merit Increase
WHERE Year=2013;

Essbase Example

FIX(“2013”)
 Salary = “Annual Salary” * “Merit Increase”;
ENDFIX

Executing on all records when they meet criteria

Relational Example

SELECT
 CASE
 WHEN Year = 2013 THEN Salary = Annual Salary * Merit
Increase
 ELSE Salary = Salary
 END
FROM table_name

Essbase Example

IF(@ISMBR(“2013”))
 Salary = “Annual Salary” * “Merit Increase”;
ENDFIX

When running an UPDATE query, limiting the number of records
is more efficient than running the query on all the records
and checking for specific criteria to execute the logic.

Why Fix On Dense?
The reason we are taught to FIX on sparse dimensions and use
IF on dense dimensions is that a FIX will improve performance
by limiting the number of blocks on which the calculation
executes. There is no reason to FIX on dense dimensions
because it isn’t limiting the number of blocks on which the
calc is executed.

Forget all that!
Calculations still run for every intersection, not JUST the
intersection of sparse members. Assume a calculation fixes on
one intersection of sparse members. Also assume that there
are 20 measures and 12 periods that are stored, and both
dimensions are dense. The following calculation

Salary = Annual_Salary * Merit_Increase;

would run on every dense combination, so it would execute 240
times (12 x 20). You can easily prove this by incrementing
the value of one dense member by 1.

Salary = Salary 1;

If Salary starts as #Missing, or 0, and the above line is
executed, Salary will be 20 for each month.

Solution
This can easily be resolved. Since you only want the
calculation to execute one time on the block, add one member
from the measures dimension to your fix statement. This
member doesn’t have to be the member you are calculating. I
typically will fix on a generic measure to eliminate
confusion. Change the calculation to the following.

FIX(No_Measure)
 Salary = Salary 1;
ENDFIX

Make sure Salary is set to #Missing or 0, and execute the new
calculation. When the new calculation script is executed, you
should see a value of 1 for every month.

In a situation where Salary = Annual_Salary * Merit_Increase,
the result will be correct regardless of whether the
calculation fixes on one measure, but the performance will be
far worse when executed on every Measure because it will run

the same calculation multiple times.

