
One at a time, please

Introduction
One of the problems with giving users of Hyperion Planning the
ability to run calculations is opening up the possibility for
all of them to run the same calculation at the same time.
This can cause a range of issues, from slower performance, to
calculations never finishing due to locked blocks, to crashing
the server.

Prior to Planning, I created VB applications to monitor what
was calculated to make sure multiple calculations were not
executed at the same time. Initiating a calculation through a
web portal allowed us to notify the user that the calculation
request was ignored because a calculation was already running.

Both Essbase and Planning have come a long way since the 90s.
With the introduction of the @RETURN function, developers can
interact with users and create a break in a calculation
(business rule) so it doesn’t proceed. The message is still
reactive, but with some creativity, there are some really
awesome things you can achieve. Controlling what calculations
are executed simultaneously is one of those things.

The Goal
Assume an application has a global consolidation calculation
that is required to be executed for reporting requirements.
 Since the administrators don’t want to be bothered at all
hours of day and night, they want to enable the users to run
the calculation and ensure it isn’t run more than one time
during the calculation window.

This assumes the 6 required dimensions in Planning, plus a
Department dimension.

https://in2epbcs.com/2015/03/02/one-at-a-time-please/

The Method

Make a predefined placeholder where an indicator can be saved
– a 1 or a 2. When the calculation is executed, the value
will be set to a 1. When the calculation is finished, the
value will be set to 2. When the calculation is initiated, it
will check that value. If it is a 2, the calculation will
execute. If it is a 1, it assumes a calculations is already
running so it will abort and notify the users. This ensures
that the calculation will never run twice at the same time.

Note: I prefer the use of 1 and 2 over 0 and 1. Many times a
process is implemented to eliminate zeros and restructure the
application periodically. Not using a zero can eliminate
errors in some situations.

Example
FIX("No Entity","No_Dept","No
Account","Budget","FY15","BegBalance") SET CREATEBLOCKONEQ
ON; "Working"(/* Check to see if a calculation is
running If the flat is a 1, return a message and stop
the calculation If the flag is a 2, continue */

IF("Working" == 1) @RETURN ("This calculation is
already running. Please come back at a
 later time and try again.", ERROR);
 ELSE "Working" = 1; ENDIF) SET
CREATEBLOCKONEQ OFF; ENDFIX /* Aggregate the database */
FIX("Working","Budget","FY15") AGG("Entity","Department");
ENDFIX /* Set the flag back to 2 */ FIX("No
Entity","No_Dept","No Account","Budget","FY15","BegBalance")
 "Working" = 2; ENDFIX

Summary
This method could be used in a variety of situations, not just
a global calculation. If this inspires you to use the @RETURN
in other ways, please share them with the In2Hyperion and we
can make your solution available to everybody.

