
Remove Dimensions From
Planning LCM Extracts

Problem
I am currently working with a client that is updating a
planning application and one of the changes is to remove a
dimension. After the new application was setup and the
hierarchies were modified to meet the objectives, migrating
artifacts was the next step. As many of you know, if you try
to migrate web forms and composite forms, they will error
during the migration due to the additional dimension in the
LCM file. It wouldn’t be a huge deal to edit a few XML files,
but when there are hundreds of them, it is extremely time
consuming (and boring, which is what drove me to create this
solution).

Assumptions
To fully understand this article, a basic understanding of XML
is recommended. The example below assumes an LCM extract was
run on a Planning application and it will be used to migrate
the forms to the same application without a CustomerSegment
dimension. It is also assumed that the LCM extract has been
downloaded and decompressed.

Solution
I have been learning and implementing PowerShell scripts for
the last 6 months and am overwhelmed by how easy it is to
complete complex tasks. So, PowerShell was my choice to
modify these XML files in bulk.

It would be great to write some long article on how smart this
solution is and overwhelm you with my whit, but there is not
much too it. A few lines of PowerShell will loop through all

https://in2epbcs.com/2016/12/10/remove-dimensions-from-planning-lcm-extracts/
https://in2epbcs.com/2016/12/10/remove-dimensions-from-planning-lcm-extracts/

the files and remove the XML tags related to a predefined
dimension. So, let’s get to it.

Step 1 – Understand The XML
There are two folders of files we will look to. Forms are
under the plan type and the composite forms are under the
global artifacts. Both of these are located inside the
resource folder. If there are composite forms that hold the
dimension in question as a shared dimension, both will need to
be impacted. Scripts will be included to update both of these
areas.

Inside each of the web form files will be a tag for each
dimension, and it will vary in location based on whether the
dimension is in the POV, page, column, or row. In this
particular example, the CustomerSegment dimension is in the
POV section. What we want to accomplish is removing the
<dimension/> tag where the name attribute is equal to
CustomerSegment.

For the composite forms, the XML tag is slightly different,
although the concept is the same. The tag in composite form
XML files is <sharedDimension/> and the attribute is

dimension, rather than name.

Step 2 – Breaking Down the PowerShell
The first piece of the script is just setting some environment
variables so the script can be changed quickly so that it can
be used wherever and whenever it is needed. The first
variable is the path of the Data Forms folder to be executed
on. The second is the dimension to be removed.

Identify the source of the Data Forms folder and the
dimension to be removed
List all files, recursively, that exist in the path above
$files = Get-ChildItem $lcmSourceDir -Recurse |
where {$_.Attributes -notmatch 'Directory'} |

The next piece of the script is recursing through the folder
and storing the files in an array. There is a where statement
to exclude directories so the code only executes on files.

List all files, recursively, that exist in the path above
$files = Get-ChildItem $lcmSourceDir -Recurse |
where {$_.Attributes -notmatch 'Directory'} |

Step 3 – Removing The Unwanted Dimension
The last section of the script does most of the work. This
will loop through each file in the $files array and

Opens the file1.
Loops through all tags and deletes any <dimension/> tag2.
with a name attribute with a value equal to the $dimName

variable
Saves the file3.

Loop through the files and find an XML tag equal to the
dimension to be removed
Foreach-Object {

$xml = Get-Content $_.FullName
$node = $xml.SelectNodes(“//dimension”) |
Where-Object {$_.name -eq $dimName} | ForEach-Object {
Remove each node from its parent
[void][/void]$_.ParentNode.RemoveChild($_)
}
$xml.save($_.FullName)
Write-Host “($_.FullName) updated.”
}

Executing The Logic On Composite Forms
The above concepts are exactly the same to apply the same
logic on composite forms files in the LCM. If this is
compared to the script applied to the web forms files, there
are three differences.

The node, or XML tag, that needs to be removed is called1.
sharedDimension, not dimension. (highlighted in red)
The attribute is not name in this instance, but is2.
called dimension. (highlighted in red)
We have added a counter to identify whether the file has3.
the dimension to be removed and only saves the file if
it was altered. (highlighted in green)

The Script

$lcmSourceDir = "Z:\Downloads\KG04\HP-SanPlan\resource\Global
Artifacts\Composite Forms"
$dimName = "CustomerSegment"
List all files
$files = Get-ChildItem $lcmSourceDir -Recurse | where

{$_.Attributes -notmatch 'Directory'} |
Remove CustomerSegment
Foreach-Object {
 # Reset a counter to 0 - used later when files is saved
 $fileCount = 0

$xml = Get-Content $_.FullName
$node = $xml.SelectNodes(“//sharedDimension“) | Where-Object
{$_.dimension -eq $dimName} | ForEach-Object {
#Increase the counter for each file that matches the criteria
 $fileCount++
Remove each node from its parent
[void][/void]$_.ParentNode.RemoveChild($_)
}
If the dimension was found in the file, save the updated
contents.
 if($fileCount -ge 1) {
$xml.save($_.FullName)
Write-Host “$_.FullName updated.”
 }
}

Summary
The first script may need to be run on multiple plan types,
but the results is an identical folder structure with altered
files that have the identified dimension removed. This can be
zipped and uploaded to Shared Services and used to migrate the
forms to the application that has the dimension removed.

The scripts above can be copied and pasted into PowerShell, or
the code can be Downloaded.

http://www.in2hyperion.com/wp-content/uploads/2016/12/PowerShell-Remove-LCM-Dimension.txt

