
Adventures in Groovy – Part
2: Data Validation

Introduction
We all know the Data Form validation rules are serviceable,
but they are not robust. When Smart View advanced and forms
were opened in Excel, the validation logic developers had in
JavaScript became useless. Since then, we have really missed
the ability to communicate with the user interactively with
visual cues and validation rules that halted the saving of
data. Well, Groovy calculations to the rescue!

I will preface with the fact that I am encountering some odd
behavior, so I am going to break this up into multiple
articles. It appears that Oracle is validating Groovy
enhancements in Data Forms on the web, and not necessarily
testing the full functionality in Smart View. Currently, I
have this working in a browser perfectly, but 3 of the 8
columns are failing in Smart View. I am hoping to get closure
to a ticket on this in the near future. When I get a
resolution, I will amend this article with some clarity on
either what I am doing wrong, or when it will be resolved.

High Level requirement
At a high level, the planners want to see any seeded value
that was changed with a different background color to single
out the lines that have been edited.

The Details
We have a form that provides the users the ability to override
seeded data. In this example, a planner can change the
Average Price/Case, Net Sales, and/or GP Level 2 at any level
of the hierarchy and gets allocated down to level 0 on a % to

https://in2epbcs.com/2017/09/09/adventures-in-groovy-part-2-data-validation/
https://in2epbcs.com/2017/09/09/adventures-in-groovy-part-2-data-validation/

Total. This form has the accounts in question for 3 sources.
 The override columns are a separate version that is set to
top down so security doesn’t prevent them from entering at a
non-level 0 member. This is only used to enter the 3 values,
is used to calculate the Input source, and is cleared.

The Initialized source is seeded from prior year growth.
This, in essence, is the basline seeded amount. At
initialization, the Input source is a duplicate of Initialized
source.

The Initialized source is also on the form. When overrides
are entered, it is applied to the input source. At this point

in the process, the Input is different from the Initialized
source, as shown by the orange color in the previous image.

Why Not Validation Rules?
First, there is limited functionality in the Data Form
validation rules. In this case, the functionality is there,
but has an issue with the precision of the data. Even though
Input equals Initialized (or appears to), validation fails
and shows a different background color. I have seen this
before with decimals with large precision.

How Groovy Solves This
Groovy calculations have the ability to traverse through the
cells of a Data Form. The 8 cells that can be impacted by the
3 overrides can be checked against their counterpart in
subsequent columns (comparing the same account in the Input
source to the Initialized source). This is for another
discussion, but Groovy can actually create temp grids and pull
data directly from Essbase that doesn’t exist in the grid,
too.

To simplify this, the following only loops through the first
column – Avg Price / Case. This can be replicated easily for
all subsequent columns by changing the account in question.

This example uses several Groovy methods/functions. First,
the data grid is stored in a variable, as it will be
referenced throughout. Next, we are using the
dataCellIterator, which is the same in the previous post on
Groovy. If you didn’t read that, or don’t understand the
iterator, check that out.

At this point, the calculation is requesting to loop through
all the cells with Avg Price/Case AND Input in the POV.
Inside the loop, lDestMembers is set to a list equal to all
the members in the POV for the relative cell. memberNames
returns every member in the POV in a Groovy list.

The next step is getting the value for the corresponding cell
in the Initialized source. getCellWithMembers accomplishes
this with the appropriate parameters passed. This function
accepts member names, so all the members in the Input cell’s
POV are used, excluding the source dimension. This is changed
to Initialize.

Lastly, the comparison is made between the two cells. If they
are not identical, setBgColor is executed on the Input source
cell to identify it as something that has changed due to an
override.

The Calculation
// Initialize a grid
DataGrid curDataGrid = operation.grid
// Set the color to be used if the values are not identical
def iColor = 16746496
// Loop through the cells in column that has
// Average Price/Case and Input in the POV
operation.grid.dataCellIterator('Avg_Price/Case','Input').each
 {

http://www.in2hyperion.com/2017/08/08/my-adventures-in-groovy-calculations-part-1/
http://www.in2hyperion.com/2017/08/08/my-adventures-in-groovy-calculations-part-1/

 // Get the POV for the cell
 def lDestMembers = it.memberNames
 // get the value in the Initialized source that is
equivalent to
 // the cell in the Input Source. The POV form the Input
source
 // is used with the exception of the source is changed to
Initialize

 def dValue =
operation.grid.getCellWithMembers(lDestMembers[0].toString(),
 lDestMembers[1].toString(),lDestMembers[2].toString(),
 lDestMembers.toString(),lDestMembers[4].toString(),

lDestMembers[5].toString(),"Initialize",lDestMembers[7].toStri
ng(),
 lDestMembers[8].toString(),lDestMembers[9].toString(),
 lDestMembers[10].toString()).data
 // if the value is different between the Input and
Initialized source,
 // change the background color
 if(it.data != dValue)
 {
 it.setBgColor(iColor)
 }
 }

Data Form Changes
This new Groovy Business Rule should be added to the form and
executed on load and save. This will ensure that the accounts
that have been changed are identified both before, and after,
the user makes any changes. One more note that might save you
hours of frustration – make sure this rule runs last when
other rules are also executed!

Conclusion
This opens up a lot of options that far surpass the default
form validations. Other options are available.

Tool-tips can also be assigned to a cell instructing the

user how to resolve a validation error, if one exists.
The form save can be interrupted, stopping the user from
saving data on a form (or even saving only parts of the
form) when validation errors exist.
Data can be altered to force validation prior to saving.
Detailed messages can be displayed with instructions and
other communication to the user.
Have specific calculations executed based on the data
entered.

This is not an exhaustive list. We, as developers and
architects, literally can do anything we want and have
complete control over what happens and what doesn’t happen.
This is exciting because we have nearly complete control over
what happens on save. If you have other ideas, or questions,
please share them with comments.

