
Adventures in Groovy – Part
5: Accessing Substitution
Variables

Introduction
Accessing Substitution Variables is critical in most
calculations, and accessing them in Groovy is a little more
complex than it needs to be with not having an API to get
them. Since the SubstitutionVariable is not available, there
are a couple ways to get them. The precursor to this post is
three-fold.

Read the Bug Report: Groovy SubstitutionVariable1.
Class Not Functioning post on Jan 8, 2018 regarding the
SubstitutionVariable class availability.
Thanks to Abhi for providing a great alternative.2.
It may be helpful to read Adventures in Groovy Part 4:3.
Run Time Prompts to understand how to access RTPs in a
Groovy calculation.

In my bug report above, I suggested grabbing them via a hidden
column or row from a form. A reader suggested a another way
to do this, and I think it is a better way to accomplish it.
Rather than grabbing the substitution variable by adding it to
the form and hiding the column/row from the user, Abhi
provided a much cleaner approach to working around not having
access to the SubstitutionVariable class by using hidden RTPs.

Create Run Time Prompts to Access
Substitution Variables
Assume the following 3 variables are required in business
rules. Create a new RTP for each. The naming convention is

https://in2epbcs.com/2018/01/11/adventures-in-groovy-part-5-accessing-substitution-variables/
https://in2epbcs.com/2018/01/11/adventures-in-groovy-part-5-accessing-substitution-variables/
https://in2epbcs.com/2018/01/11/adventures-in-groovy-part-5-accessing-substitution-variables/
http://www.in2hyperion.com/2018/01/08/bug-report-groovy-substitutionvariable-class-not-functioning/
http://www.in2hyperion.com/2018/01/08/bug-report-groovy-substitutionvariable-class-not-functioning/
http://www.in2hyperion.com/2018/01/03/adventures-in-groovy-part-4-run-time-prompts/
http://www.in2hyperion.com/2018/01/03/adventures-in-groovy-part-4-run-time-prompts/

irrelevant, but should be considered and be consistent for
easy reference in the business rules. In this read, I have
assumed there isn’t an existing RTP with the defaults set to a
substitution variable. Even if there is, it might be
beneficial to create ones specifically for this need so future
changes don’t impact the values.

Name: subVar_CurMonth
Type: Member
Dimension: Period
Default Value: &v_CurMonth
RTP Text: N/A

Name: subVar_CurYear
Type: Member
Dimension: Period
Default Value: &v_CurYear
RTP Text: N/A

Name: subVar_BudYear
Type: Member
Dimension: Period
Default Value: &v_BudYear
RTP Text: N/A

Business Rule Inclusion
Inside the business rule, the following convention is required
to add the variables.

/*RTPS: {subVar_CurMonth subVar_CurYear subVar_BudYear}*/

Set all the RTPs in the Variables tab to set to hidden so the
user isn’t prompted for these. Now, the substitution
variables can be referenced.

def varCurMonth = rtps.subVar_CurMonth.toString()
def varCurYear = rtps.subVar_CurYear.toString()
def varBudYear = rtps.subVar_BudYear.toString()

Conclusion
Since these are likely to be used in many rules, it would be
beneficial to add these to a script and embed that script into
the rules that need to access these. Any new variable that
needs to be included can be added to the script, and all the
business rules would then have access to them. There are a
number of ways to do this with Groovy calculations, but the
simplest way is to embed it like a non Groovy business rule.
This can be dragged from the left pane, or entered manually.
The syntax is

%Script(name:="script name",application:="application
Name",plantype:="plantype name"

If and when Oracle releases the class that provides direct
access to sub vars, expect it to be documented here.

