
Adventures in Groovy – Part
6: Converting a POV into a
Fix

Introduction
One of the fundamental features of a Groovy calculation is the
ability to dynamically grab aspects of a grid, and getting the
POV is something that is required to dynamically generate an
Essbase calculation. There are times when the entire POV is
required, times when only members from specific dimensions are
needed, and situations where only the rows and columns of the
edited cells are used to construct effective fix statements.
All 3 of these situations will be discussed.

Use Case (Pulling POV Members)
Many times, the Fix statement of a calculation being built
includes all members in a data grid POV.

Code
List<String> povMemberNames =
operation.grid.pov*.essbaseMbrName
String calcScript = """
Fix("${povMemberNames.join('", "')}")
 [Calculation]
EndFix;"""

Breaking It Down
The operation.grid.pov provides access to all the dimensions
in the POV. From that, dimension names, member names, and
other properties that are useful, can be accessed. When
followed by a *, it returns all the dimensions in the POV to a
list. Using the essbaseMbrName instructs the function to

https://in2epbcs.com/2018/01/17/adventures-in-groovy-part-6-converting-pov-into-fix/
https://in2epbcs.com/2018/01/17/adventures-in-groovy-part-6-converting-pov-into-fix/
https://in2epbcs.com/2018/01/17/adventures-in-groovy-part-6-converting-pov-into-fix/

return every member in the POV. The povMemberNames variable
stores a list of all those values.

When building the calcScript variable,
${povMemberNames.join(‘”, “‘)} will return the list,
delineated with “,”. This would return something like
membername1″,”membername2″,”membername3. This obviously is
missing surrounding quotes, which is why it is embedded inside
the quotes.

Use Case (Pulling Selective Dimension
Members From The POV)
Pulling one, or all of the dimension values in a POV, in
individual variables for later use, provides the ultimate
flexibility. The following pulls all the members and stores
them in a unique variable. Then, any dimension in the POV can
be accessed. An easy way to accomplish this is to use the
find method of a List object to filter the elements.

Code
List<String> povmbrs = operation.grid.pov
String curYear = povmbrs.find {it.dimName
=='Years'}.essbaseMbrName
String curCompany = povmbrs.find {it.dimName
=='Company'}.essbaseMbrName
Fix((${fixValues(curYear, curCompany))
 [Calculation]
EndFix;"""

Breaking It Down
The first line stores the entire POV collection. That
variable can be accessed and used like any Groovy collection.
By using the find method, items in the collection can be
filtered. povmbrs.find {it.dimName ==’Years’} will return the
Years dimension object and one of the properties of that
object is the essbaseMbrName. Using it will return an Essbase

friendly member name.

The “fixValues” method converts strings to “Fix friendly”
strings that can be used in an Essbase calc script. Any of
the following objects can be inserted into this method.

AttributeDimension
AttributeMember
Dimension
Member
PeriodDimension
RtpValue
YearDimension

The result is the dimension member name inside a fix
statement.

Rows/Columns
Some of the real efficiencies with Groovy stem from the fact
that the edited cells can now be determined and a Fix
statement can dynamically be generated to isolate longer
running calculation on only the rows and columns that have
changed. In the following example, there are two methods to
get the members.

Code
Set<String> periods = []
Set<String> products = []
operation.grid.dataCellIterator({DataCell cell ->
cell.edited}, MemberNameType.ESSBASE_NAME).each { DataCell
cell ->
 periods << cell.periodName
 products << cell.getMemberName("Product")
 }

String calcScript = """
Fix("${periods.join('", "')}", "${products.join('", "')}")
 [Calculation]

EndFix;"""

Breaking It Down
If you are unclear about how to iterate through a grid, read
Adventures in Groovy Part 3: Acting On Edited Cells. Inside
the dataCellIterator, the example assigns two list objects
with the respective members. Since this only touches the
cells that have been edited, only the periods and products
that have been updated will be stored in the respective
variables.

You may be wondering if this is truly the most isolated
combination of data. Theoretically, the same product may
not have the same edited months. You could further condense
changes in the Fix statement by looping through the rows and
creating a fix for every row. In this example, Period is
dense, so doing this would not change the number of blocks.
Depending on the application, taking this extra step might
prove more efficient. Rather than complicate this further,
we are assuming this isn’t required.

Every required dimension (Account, Entity, Period, Scenario,
Version, and Year) has its own method. cell.periodName returns
the Period member of the cell. All the dimensions have the
same naming convention.

For custom dimensions, getMemberName can be used with the
required dimension passed as a parameter. If you want
consistency, this method can also retrieve the 6 required
dimensions. cell.getmemberName(“DimensionName“), where
DimensionName is an actual dimension, returns the respective
member in that dimension.

Just like the previous example, add the variable to the Fix
statement with a join and it returns the delimited list of
members that have been edited.

“${periods.join(‘”, “‘)}” returns the list of Periods

http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/

that have edited cells, and
“${products.join(‘”, “‘)}” returns the rows (or
products) that have been edited.

Wrapping Up
One last step that can be added, and should be, is the check
to see if any cells have been modified by evaluating the size
of one of the lists that is created during the grid
iteration. After the iteration is completed, the following
can be added to accomplish this. If there are no cells
edited, the calculation is stopped at the return line and
nothing is sent back to Planning/Essbase to execute.

if(products.size() == 0) {
 println("No edited cells found!")
 return
}

Joining the examples above, the fix would look like this.

String calcScript = """
 Fix("${povMemberNames.join('", "')}", "${periods.join('",
"')}", "${products.join('", "')}", ${fixValues(curYear,
curCompany))
 [Calculation]
EndFix;"""
return calcScript

Conclusion
If you implement this, you will likely see huge performance
improvements. In the client production applications, I have
implemented this in, I see at least a 95% improvement in
performance. This same logic can be used for Data Maps and
data movements from ASO to BSO (which we will cover later)

http://www.in2hyperion.com/wp-content/uploads/2018/01/Groovy-Performance-Comparison.png

