
Adventures in Groovy – Part
7: Validating Run Time
Prompts

Introduction
When developing applications in PBCS, there are times when we
need to request information from users. This is especially
useful in workforce application, but certainly not limited to
them. With Groovy, we can take validation to the next level.
We can compare inputs to each other, we can limit input, and
we can now stop the execution of the calculation until the
inputs are validated. The difference now is that we have the
ability to keep the prompts open, and force the user to either
enter valid data, or cancel the request.

Validating Hire Date / Termination Date
Use Case
Let’s start with a very simple example. Let us assume we are
adding a new employee, and we are asking for a hire and
termination date. A real-life example would require more
options, like a name, title, union, and other required
inputs. To simplify this tutorial, we are only entering the
hire and termination dates to prove out the validation and
show functionality of the Groovy RTP validation logic.

When a user enters a termination date after a hire date and
launches the rule, it validates and executes the rule.

https://in2epbcs.com/2018/01/25/adventures-in-groovy-part-7-validating-run-time-prompts/
https://in2epbcs.com/2018/01/25/adventures-in-groovy-part-7-validating-run-time-prompts/
https://in2epbcs.com/2018/01/25/adventures-in-groovy-part-7-validating-run-time-prompts/
http://www.in2hyperion.com/wp-content/uploads/2017/12/RTP-Validation-Success-Entry-1.jpg

When the job is opened in the job console, we see the RTPs and
the values entered, and the Job Status is selected, the log
shows the values returned to Essbase.

When a user enters a termination date prior to a hire date and
launches the rule, it an error is returned and the RTP window
doesn’t go away. At this point, the user has to correct the
error, or cancel the execution of the business rule.

In this case, the log shows the business rule failed.

Code
There are multiple objects that are used to accomplish RTP
Validation. The code that processed the above action is the
following.

http://www.in2hyperion.com/wp-content/uploads/2017/12/RTP-Validation-Success.jpg
http://www.in2hyperion.com/wp-content/uploads/2017/12/RTP-Validation-Error-Entry-1.jpg
http://www.in2hyperion.com/wp-content/uploads/2017/12/RTP-Validation-Error.jpg

/*RTPS: {RTP_HireDate} {RTP_TermDate}*/
def mbUs = messageBundle(["validation.InvalidDate":"The
termination date must be after the hire date."])
def mbl = messageBundleLoader(["en" : mbUs])

// Validate the Rtp values
if(rtps.RTP_HireDate.getEssbaseValue() >
rtps.RTP_TermDate.getEssbaseValue())
 throwVetoException(mbl, "validation.InvalidDate",
rtps.RTP_HireDate)

// Print the results to the log
println "Hire Date: " + rtps.RTP_HireDate.getEssbaseValue()
println "Term Date: " + rtps.RTP_TermDate.getEssbaseValue()

rtps object
Creating RTPs in Groovy was covered in the previous article.
If you haven’t read that, it would be a good time to take a
look, as it explains the basic of this object. Expanding on
the use of the object, we are using some additional methods.
This object has many, including returning the input as
boolean, double, strings, dates, members, and smart lists, to
name a few. In this example, we are using getEssbaseValue,
which returns the value sent to Essbase and stored. If there
was a need to compare date ranges, we could have used the
getDate, and expanded on this with the Groovy date functions
to get the days, months, or years between the entered values.
In this simple example, we just want to make sure the term
date is greater than the hire date.

messageBundle
The first thing that is requires is to create a messageBundle
and messageBundleLoader. These two objects work together to
hold the errors, the error messages, and multiple languages,
if required.

The messageBundle is a map that holds all the errors (name and
description). In this example, we only have one error, but

more can be added and separated by commas. The
messageBundleLoader holds all the messageBundle objects that
represent the different languages.

throwVetoException
When an exception is found, executing this method will
initiate an error and cause the RTP validations to fail. This
method requires the messageBundleLoader, and the error to be
returned to the user.

Other Use Cases
By now you are probably already thinking of other uses of
this. I can see limiting growth rates, confirming
combinations of RTPs (like not allowing salaried people in a
union), ensuring that a new employee doesn’t have a hire date
prior to the current date, and probably hundreds of other ways
to use this.

If you would like to share an idea, please post a comment!

Conclusion
Being able to validate user input prior to executing a
calculation and returning the input request to the user is
huge step forward, and just another benefit of Groovy
calculations. We can reduce the number of user errors and
improve the user experience.

