
Adventures in Groovy – Part
10: Validating Form Data

Introduction
One of the huge frustrations I have with Planning is the fact
that you haven’t been able to stop a user from saving data
that didn’t validate since Smart View was released and Data
Forms could be opened in Excel. Prior to that, the forms
could be customized with JavaScript and the form save could be
interrupted and cells flagged. Well, thanks to Groovy
Calculations, it is back, and every bit as flexible.

Example
The following Data Form allows users to add new products and
enter financial information. In this form, 3 rules exist.

The GP Level 2 % has to be between -10% and 30%.1.
The Regular Cases CANNOT have one month that is more2.
than 50% of the total cases.
If Regular Cases is entered, a corresponding Average3.
Price per Case is required.

When a user fills out the form and violates these rules, the
cell background is changed and a tool tip is added. If
violations exists, the form does NOT save any changes to the
database. Before any changes can be committed, all errors
have to be corrected. In this example, all 3 validation rules
are violated and noted. If the user hovers the mouse over the
cell with a violation, the tool tip is displayed with the row
and column members, and an error message explains to the user
what the issue is with the data that is entered.

https://in2epbcs.com/2018/02/28/adventures-in-groovy-part-10-validating-form-data/
https://in2epbcs.com/2018/02/28/adventures-in-groovy-part-10-validating-form-data/

The Code
The significance of this is huge, but the implementation is
rather simple. It is probably be one of the more basic things
created with a Groovy Calculation. Quite simply, to add a
validation error and stop the form from saving, all that has
to be done is to add a validation error to the cell.

cell.addValidationError(0xFF0000, “Customer Error
Message“,false)

This method accepts 3 parameters.

The first is the color you want the background to change1.
to. This is the integer value of any color. Most
people are familiar with the RGB code, and this can be
retrieved in almost any image editor (even Windows
Paint). There are many free options, like the free
option at https://www.shodor.org/ to convert that to a
value that can be interpreted in Groovy.
The second parameter is the error message to be2.
displayed in the tool tip.
The third is optional, and defaults to false. False3.
that it will identify the cell as an error and stop the
form from saving.

http://www.in2hyperion.com/wp-content/uploads/2018/02/Form-Validation-GP-Input.png
https://www.shodor.org/stella2java/rgbint.html

This will likely becused in a grid iterator, which is how this
example was constructed to get the screenshot above. If the
grid iterator object is foreign to you, read Adventures in
Groovy – Part 3: Acting On Edited Cells. The one function
that is void from that article is the crossDimCell method.
This acts like a cross dim (->) in a calculation. So, it
references the POV of the cell and overrides the dimension of
the member specified as a parameter. If multiple differences
exist, separate the names with a comma.

def BackErrColor = 16755370 // Light Red
//Loop through the cells on the Regular Cases row
operation.grid.dataCellIterator('Regular_Cases','Jan','Feb','M
ar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec').eac
h {
 // Set a variable equal to all 12 months
 def CaseTotal = it.crossDimCell('Jan').data +
it.crossDimCell('Feb').data + it.crossDimCell('Mar').data +
it.crossDimCell('Apr').data + it.crossDimCell('May').data +
it.crossDimCell('Jun').data + it.crossDimCell('Jul').data +
it.crossDimCell('Aug').data + it.crossDimCell('Sep').data +
it.crossDimCell('Oct').data + it.crossDimCell('Nov').data +
it.crossDimCell('Dec').data
 // Check the cell value to see if it is larger than 50% of
the total year
 if(it.data / CaseTotal > 0.5)
 it.addValidationError(BackErrColor, "Cases for a single
month can't be more than 50% of the total year cases.", false)
 // If cases are entered, make sure there is a corresponding
price

 if(it.data != 0 &&
(it.crossDimCell("Avg_Price/Case_Inp").data == 0 ||
it.crossDimCell("Avg_Price/Case_Inp").data == '#Missing'))
it.crossDimCell("Avg_Price/Case_Inp").addValidationError(BackE
rrColor, "A price is required when cases are entered.", false)
}

// Loop throught the GP input cells and validate the % is in
the valid range
operation.grid.dataCellIterator('GP_2_%_Inp','Jan','Feb','Mar'
,'Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec').each {

http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/
http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/

 println "$it.MemberNames $it.data"
 if(it.data > 0.3 || it.data < -0.1) {
 it.addValidationError(BackErrColor, "GP2 has to be between
-10% and 30%.", false)
 }
}

Form Settings
The one gotcha is that this needs to run BEFORE SAVE. It
makes sense, but I was expecting a similar result as
validating a RTP when the Business Rule runs on save, so it
took me a good night sleep to recognize that error in
judgement.

Why This Is Significant
You may not thing this is a big deal because you can check
this in a Business Rule after the data is saved and return an
error message requesting the user to change it. However, the
users are as busy, if not more busy, than you are. There are
last minute changes that get slammed in at the end of a
forecast or budget cycle. There is no design doc to go back
to and say it is going to take longer and we need a change
order. The CFO won’t accept that as an answer, so things get
forgotten or missed. This example forces valid data (not
necessarily accurate) to be entered, and all kinds of things
can be checked to make sure human errors don’t turn into huge
issues for financial reporting. Think if you had a product
and forgot to put a price. You could be missing millions, and
this type of proactive validation can prevent such things from
happening. Little things like this reduce, or eliminate, fire
drills later on in the budget cycle.

Conclusion
There is an infinite number of things that can be
accomplished. Simple things like the above, to extremely

complex validation can be added. Think about ensuring
allocated dollars are fully allocated(100%), forcing salaries
to be in predefined pay bands for titles, and forcing the
results of driver based planning to be within a logical
margin.

If you have some examples, please share with the community by
posting a comment below.

