
Adventures in Groovy – Part
14: Returning Errors (Form
Cells)

Introduction
To expand on Part 13 of this series, which covers stopping a
form from saving when there are validation errors, is
identifying the errors by cell and communicating with the user
the problems at a cell level. This does NOT stop at the first
error and throw an exception. This will iterate through all
the errors and explain each one at a cell level for the user
to correct. The following example will use similar code and
concepts, but will apply validations to each cell by changing
the color and setting a tool-tip with the explanation of what
the validation error is.

Before we continue, the methods to do this do not make use of
the MessageBundle. I think this is a miss because one bundle
can be reused for similar validation, and the current methods
assume a single language. There is a way to use it
indirectly. There is a bug that is causing issues with the
method, so we will assume basic functionality and come back to
the use of a MessageBundle when the bug is fixed

Throw an Exception (Interrupt Form Save)
The basic inclusion of cell validation is very simple. As the
code iterates and validates the cells, the following will
change the background color, add a tool-tip, and invalidate
the form and stop it from saving any data to Planning.

def BackErrColor = 16755370 //Red
it.addValidationError(BackErrColor, "error message
here",false)

https://in2epbcs.com/2018/03/28/adventures-in-groovy-part-15-returning-errors-form-cells/
https://in2epbcs.com/2018/03/28/adventures-in-groovy-part-15-returning-errors-form-cells/
https://in2epbcs.com/2018/03/28/adventures-in-groovy-part-15-returning-errors-form-cells/
http://www.in2hyperion.com/2018/03/19/adventures-in-groovy-part-13-returning-errors-data-forms/

The color can be different for different errors and it
completely customizable. The error message can be anything
necessary.

Consolidated Example
The form associated to this rule has the ability to adjust a
number by either increasing or decreasing the units by month.

To illustrate this, here is an example of looping through
cells and validating two things.

Units can’t ever be adjusted to a negative amount – they1.
can be decreased, but never to a negative value.
Any change to units must be offset to have a full year2.
impact of zero.

def BackErrColor = 16755370 //Red

def CaseTotal = it.crossDimCell('Jan').data +
it.crossDimCell('Feb').data + it.crossDimCell('Mar').data +
it.crossDimCell('Apr').data + it.crossDimCell('May').data +
it.crossDimCell('Jun').data + it.crossDimCell('Jul').data +
it.crossDimCell('Aug').data + it.crossDimCell('Sep').data +
it.crossDimCell('Oct').data + it.crossDimCell('Nov').data +
it.crossDimCell('Dec').data
operation.grid.dataCellIterator('Working_Inp','Jan','Feb','Mar
','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec').each
{
 if(it.data + it.crossDimCell('OEP_Working').data < 0.0)
 {
 def change = it.data + it.crossDimCell('OEP_Working').data
 it.addValidationError(BackErrColor, "Your adjustment forces
the new cases to be a negative volume. Increase your

http://www.in2hyperion.com/wp-content/uploads/2018/03/PBCS-Groovy-Cell-Validation.png

adjustment by $change", false)
 }
 else
 {
 if(CaseTotal != 0.0 && it.data != 0.0)
 it.addValidationError(BackErrColor, "Adjustments must not
have a full year impact. Currently, the data would change by
$CaseTotal.", false)
 }
 }

Enhancement Request
One thing you might notice is the lack of inclusion of the
messageBundle object. I have requested an enhancement, as it
only makes sense that it be used here, and they have added it
to the enhancement list. So, look for this be added in the
future. It can be identified internally by the following.

Enh 27656951 – EPBCS – GROOVY FUNCTION ERRORING

I don’t know why, but Oracle has no way of getting the message
based on the local from the messageBundle. Many of the
methods, like getMessage, are not made available to us as
developers, that would likely circumvent this issue.

Summary
As with the other validation methods, this introduces a huge
benefit in both usability and budget accuracy. Any time data
validation can be performed proactively, everybody wins.
There is less of a burden on administrators and users get
instant feedback they can easily and quickly fix.

