
Adventures in Groovy – Part
18: Real Time Data Movement
(Setting The Stage)

Introduction
One of the challenges with Hyperion Planning is the ability to
move data between applications in real time. A classic
example of this is a P&L application with other modules that
have greater detail. The following is an example.

A Gross Profit specific database that includes a
product, delivery channel, and product type dimension.
A CapEx specific database with asset type, asset, and
asset category
A Workforce specific database with job type, union, and
employee.
A P&L application that includes income and expense with
information fed from the detailed models at consolidated
levels.

In June of 17, with the release of Groovy Calculations, the
ability to update any of the detailed models and synchronize
the consolidated data in real time to the P&L database became
possible. When a user saves data, within seconds, the data
can be reflected in a database with different dimensional.

https://in2epbcs.com/2018/04/16/adventures-in-groovy-part-17-real-time-data-movement-setting-the-stage/
https://in2epbcs.com/2018/04/16/adventures-in-groovy-part-17-real-time-data-movement-setting-the-stage/
https://in2epbcs.com/2018/04/16/adventures-in-groovy-part-17-real-time-data-movement-setting-the-stage/

Setting The Stage
This is going to be a lengthy, multi part article. Before we
begin, the application architecture is going to be laid out so
the calculations can be explained in detail. The application
will consist of 2 play types. The first is the P&L and the
second is a detailed product planning play type. We won’t
introduce a Capex and Workforce model. It will only
complicate the explanation and is redundant in the logic
required.

The data flow and architecture looks like this. GP
(Gross Profit Product Detail) databases
The initial plan type is called GP

Although this may not match with your model, the concept is
the same.

It has dimensions that are required to plan at a product
level that don’t exist in the P&L application.
It has specific logic that doesn’t apply to other
databases.
It has a unique account dimension that doesn’t mirror
what is in the other applications.

http://www.in2hyperion.com/wp-content/uploads/2018/01/Groovy-Performance-Comparison.png
http://www.in2hyperion.com/wp-content/uploads/2018/04/Groovy-Data-Movement-Process.png

Consolidation takes a long time and is not optimal to be
performed on a data form save.

As previously stated, the same differences will exist in other
models, like Capex and Workforce.

Fin (Income Statement / Balance Sheet) databases
The Fin application is a typical consolidated reporting
application that excludes details like product level revenue,
employee level plans, and assets and their properties needed
to calculate capital expense.

Dimensional Summary
For this example, the following shows the application
dimensions and database associations

The Synchronization Process
The GP database includes 3 dimensions that don’t exist in the
Fin model. For this to be moved to the Fin model, 3
dimensions need to be consolidated. The GP model also has a
different account structure. A translation between the two

http://www.in2hyperion.com/wp-content/uploads/2018/03/Real-Time-Reporting-Dimensional-Summary.png

account structures has to occur before the synchronization can
be completed. The other piece that is not required, but
highly encouraged, is to only work with the data that has
changed. So, this will dynamically select the data rows on
the form that have been edited by the user. Functionally, the
following happens when a user saves a data form.

Identify the members that need to be included in the
synchronization
Push the level zero data from the GP BSO database to the
GP ASO database (only edited data)
Retrieve the data from the GP ASO database at a total
product, channel, and material group
Submit the data from the above retrieve to the Fin BSO
application and the rFin ASO application
Execute any logic that needs to be completed in the Fin
application (taxes, driver-based data, etc.)
Push the level zero data from the Fin BSO database to
the Fin ASO database

Groovy Methods Required
There is a lot going on here, so we are going to summarize and
explain the Groovy methods that will be used to accomplish the
synchronization.

DataGridIterator
To make this as efficient as possible, it is important to only
execute the methods on the data that have been edited. If you
haven’t read Part 3 of this series, take a look before you
continue.

DataMap / SmartPush
Once the POV is identified that needs to be included in the
synchronization, the first operation is to push that data to
the reporting cube. This will be used a couple of times in
this sequence. Part 8 of the Groovy Series covers this in

http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/
http://www.in2hyperion.com/2018/02/12/adventures-in-groovy-part-8-customizing-data-maps-and-smart-pushes

detail and an understanding is helpful before you continue.

DataGridBuilder / DataGridDefinitionBuilder
This has not been covered yet. These methods give you
complete control to simulate a retrieve and submit. These two
objects are the major pieces of the puzzle that have never
really been exposed in any fashion. These are the methods
that really open up the possibilities for real time reporting.

Take A Breath
You may be a little overloaded with new information. We will
let this settle in and give you a chance to digest the
concepts. The next article will walk you through the code.
To satisfy your curiosity, watch this video, which takes you
through the above example in a live environment.

