
Adventures in Groovy – Part
21: Real Time Data Movement
(Getting REALLY Groovy)

Introduction
Before we jump in, there are a number of questions you are
going to have at the conclusion of this article. Please post
comments and I will answer them, but keep in mind, this is an
example. Are there different ways to accomplish this? You
bet. Should the data sync directly to the rFin database?
Probably not, as there are calculations in the fin database
that likely need to happen. This could be so complicated that
nobody would follow it, so some liberties have been taken to
simplify the explanation. The hope is that you can take this,
as it has all the pieces required, and modify, add pieces,
alter others, and be able to create something that meets your
needs. This is a continuation of Part 18. Please read that
before you continue.

A Visual
Before moving into the steps of the process, the following
diagram is an overview.

https://in2epbcs.com/2018/04/29/adventures-in-groovy-part-18-real-time-data-movement-getting-groovy/
https://in2epbcs.com/2018/04/29/adventures-in-groovy-part-18-real-time-data-movement-getting-groovy/
https://in2epbcs.com/2018/04/29/adventures-in-groovy-part-18-real-time-data-movement-getting-groovy/
http://www.in2hyperion.com/2018/04/16/adventures-in-groovy-part-17-real-time-data-movement-setting-the-stage/

Step 1: Validating User Input and
Executing Business Logic
Step one is Groovy validation on the input that is not
relevant to the actual data movement and has been discussed in
other articles. This also runs any business logic on the data
that has been changed. The only difference between a Groovy
and non-Groovy calculation is that the logic is isolated to
execute on only the rows and columns that have changed. This
has also been discussed in previous articles and is not
relevant to the topic of real time synchronization.

Step 2a: Isolating The Edited Rows
Isolating the edited rows to synchronize is not required, but
it will significantly reduce the amount of time the data map /
smart push takes. If this step is skipped, hundreds, if not
thousands, of products will be synchronized for no reason.
This will certainly create performance problems where there
doesn’t need to be. So, even though it isn’t required, it is
HIGHLY recommended. This will be discussed at a high level.
Much more detail on this topic can be read in Part 3 of this
series.

Although the POV in the GP form has dimensions that aren’t in
Fin, Company is. This is the one parameter that is used all
the way through this example. Year, Version, and Scenario are
all fixed. The form is only for Budget updates. This is not
common, so replicating this would likely require some

http://www.in2hyperion.com/wp-content/uploads/2018/05/Groovy-Data-Movement-Process.png
http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/

additional variables to store Scenario and Year.

// Get POV
String sCompany =
operation.grid.getCellWithMembers().getMemberName("Company")
def sMaterialGroup =
operation.grid.getCellWithMembers().getMemberName("Material_Gr
oup")
String sChannel =
operation.grid.getCellWithMembers().getMemberName("Channel")

//Get a collection of all the products that have been edited
def lstVendors = []
operation.grid.dataCellIterator({DataCell cell ->
cell.edited}).each{
 lstVendors.add(it.getMemberName("Vendor"))
}
//Convert the collection to a delimited string with quotes
around the member names
String strVendors =
"""\"${lstVendors.unique().join('","')}\""""

Step 2b: Pushing The Changes To The GP
Reporting Database
The next step of the process is to push the data (hopefully
only the changed data) from the BSO database to the reporting
database (GP to rGP in the diagram above). This step is
basically pushing the same level of data from a BSO to an ASO
database for the products that have changed. This can be done
with a Smart Push or Data Map. It can also be done with a
data grid builder, but this is a simpler way to accomplish
it. A deep dive into the data grid builder is scheduled later
in the series.

If you only want to further customize a push already on a
form, then use a Smart Push. Otherwise, a Data map is
required. There is a detailed explanation in Part 8 of the
series and is worth reading.

http://www.in2hyperion.com/2018/02/12/adventures-in-groovy-part-8-customizing-data-maps-and-smart-pushes

Smart Push is used in this example. I prefer to use Data Maps
but it is helpful to see both. A step later in the process
will use a Data Map (push from Fin to rFin).

With this example, the Smart Push on the data form has all the
appropriate overrides. The only thing needed to be customizes
is the list of products that have been changed.

// Check to see if the data map is on the form and that at
least one product was updated
if(operation.grid.hasSmartPush("GP_SmartPush") && lstVendors)
operation.grid.getSmartPush("GP_SmartPush").execute(["Vendor":
strVendors,"Currency":'"USD","Local"'])

Why use a Smart Push or Data Map here? Could you use the grid
builder? Absolutely. Quite honestly, I don’t know which is
faster, but I am going to test this in a later post and
compare the performance.

Step 3 & 4: Synchronizing With Fin and
rFin
This is where new methods will be introduced, and honestly,
the most complicated part. It is also the piece that
completely changes the landscape and completes the circle on
being able build real time reporting. Since data is moving
from a BSO to an ASO, there isn’t a pre-built solution/method
to do this. But, Groovy does open up the ability to simulate
a retrieve, with a customized POV, and a submit. At a high
level, that is what these steps accomplish. The POV from the
form is used as a starting point and changed to a total
vendor/channel/material group and retrieve the data from rGP
(ASO so no consolidation is required), create another retrieve
that is connected to the fin cube, copy the data at a total
vendor/channel/material group from rGP to the fin cube grid,
and submit it.

The following is Groovy Map, or Groovy Collection, that simply
holds the translation between the accounts in the GP database

and the accounts in the Fin database. This is nothing
proprietary to PBCS or the PBCS libraries. If you are
unfamiliar with these, explanations are easy to find by
searching Google for “Groovy data maps.”

//set account map
def acctMap = ['Regular_Cases':'Regular_Cases',
 'Net_Sales':'42001',
 'Cost_of_Sales_without_Samples':'50001',
 'Gallonage_Tax':'50015',
 'Depletion_Allowance_Manual_Chargeback':'56010',
 'Gain_Loss_Inv_Reval':'50010',
 'Supplier_Commitments':'56055',
 'Supplier_Spend_Non_Committed':'56300',
 'Samples':'56092',
 'GP_NDF':'56230',
 'GP_BDF':'56200',
 'GP_Contract_Amortization':'56205',
 'Sample_Adjustment':'56090'
]

Now, let’s start in with the methods that have not been
discussed in the Groovy Series. The remaining process simply
copies the data at total channel, total material group, and
total vendor, to the Fin databases to No Cost Center, which is
void in GP.

If you are familiar with creating Planning Data Forms, or you
use Smart View to create adhoc reports, you will understand
the concepts of creating grids with Groovy. They include the
page, column, and row definitions, all which have to be
defined. Once they are defined, well, that is all there is .
The script looks a little scary, but it is basically doing the
things you do every day.

This first grid is our source grid. It will connect to the
rGP (ASO) database and retrieve the data to be moved to the
Fin and rFin databases.

// Create variables that will hold the connection information

Cube lookupCube = operation.application.getCube("rGP")
DataGridDefinitionBuilder builder =
lookupCube.dataGridDefinitionBuilder()

// Define the POV for the grid
builder.addPov(['Years', 'Scenario', 'Currency', 'Version',
'Company','Channel','Material_Group','Source','Vendor','View']
, [['&v_PlanYear'], ['OEP_Plan'], ['Local'], ['OEP_Working'],
[sCompany],['Tot_Channel'],['Total_Material_Group'],['Tot_Sour
ce'],['Tot_Vendor'],['MTD']])

// Define the columns
builder.addColumn(['Period'], [
['ILvl0Descendants("YearTotal")']])

// Loop through the Groovy Map for the accounts to retrieve
for (e in acctMap) {
 builder.addRow(['Account'], [[e.key]])
}

// Initiate the grid
DataGridDefinition gridDefinition = builder.build()

// Load the data grid from the lookup cube
DataGrid dataGrid = lookupCube.loadGrid(gridDefinition, false)

// Store the source POV and rows to replicate in the
destination grids (rFin and Fin)
def povmbrs = dataGrid.pov
def rowmbrs = dataGrid.rows
def colmbrs = dataGrid.columns

Now that the source is ready to go, creating the objects/grids
that connect to the destination databases is next, which are
Fin and rFin. It builds out the POV, columns, rows, and also
loops through the cells in the source grid to get the data.
Almost every line is duplicated, so don’t get confused. The
reason is that the script is creating a grid to save to each
of the fin databases. To make it easier to see this, the
duplicate items are in a different color.

// Create variables that will hold the connection information
Cube finCube = operation.application.getCube("Fin")
Cube rfinCube = operation.application.getCube("rFin")
DataGridBuilder finGrid =
finCube.dataGridBuilder("MM/DD/YYYY")
DataGridBuilder rfinGrid =
rfinCube.dataGridBuilder("MM/DD/YYYY")

// Define the POV for the grid
finGrid.addPov('&v_PlanYear','OEP_Plan','Local','OEP_Working',
sCompany,'No_Center','GP_Model')
rfinGrid.addPov('&v_PlanYear','OEP_Plan','Local','OEP_Working'
,sCompany,'No_Center','GP_Model','MTD')

// Get the column from the source grid and define the column
headers for the grid
def colnames = colmbrs[0]*.essbaseMbrName
String scolmbrs = "'" + colnames.join("', '") + "'"

finGrid.addColumn(colmbrs[0]*.essbaseMbrName as String[])
rfinGrid.addColumn(colmbrs[0]*.essbaseMbrName as String[])

// Build the rows by looping through the rows on the source
grid, converting the accounts,
// and inserting the values from rGP (source)
dataGrid.dataCellIterator('Jan').each{ it ->
 def sAcct = "${acctMap.get(it.getMemberName('Account'))}"
 def sValues = []
 List addcells = new ArrayList()
 colmbrs[0].each{cName ->
 sValues.add(it.crossDimCell(cName.essbaseMbrName).data)
 addcells << it.crossDimCell(cName.essbaseMbrName).data
 }
finGrid.addRow([acctMap.get(it.getMemberName('Account'))],addc
ells)
rfinGrid.addRow([acctMap.get(it.getMemberName('Account'))],add
cells)
 }

If you noticed slightly different methods (dataGridBuilder vs
DataGridDefinitionBuilder), you have a keen eye. Later

discussions will go into detail on the differences, but the
reason both are used in this example is because
DataGridDefinitionBuilder allows the use of functions, like
ILvl0Descendants, which was used so members were not hard
coded.

The argument could be made that there is no reason to push the
data to rFin since later in the process it will be
replicated. I would not argue with that rational. However,
for educational purposes, the push to rFin here will include
USD and Local currency. The push later will only include
USD. So, there is some replication that could be removed in a
production application.

//Create a status object to hold the status of the operations
DataGridBuilder.Status status = new DataGridBuilder.Status()
DataGridBuilder.Status rstatus = new DataGridBuilder.Status()

//Initiate the grids connected to Fin and rFin with the status
object
DataGrid grid = finGrid.build(status)
DataGrid rgrid = rfinGrid.build(rstatus)

// The print lines that send information to the log are not
required,
// but showing the status is helpful in troubleshooting and
monitoring
// performance
println("Total number of cells accepted:
$status.numAcceptedCells")
println("Total number of cells rejected:
$status.numRejectedCells")
println("First 100 rejected cells: $status.cellsRejected")

// Save/Submit the form to Fin
finCube.saveGrid(grid)

// Additional information sent to the log
println("Total number of cells accepted:
$rstatus.numAcceptedCells")

println("Total number of cells rejected:
$rstatus.numRejectedCells")
println("First 100 rejected cells: $rstatus.cellsRejected")

// Save/Submit the form to rFin
rfinCube.saveGrid(rgrid)

Step 5: Executing and Synchronizing Fin
Logic
This is by far the simplest part of the entire process. This
piece doesn’t have to be a Groovy calculation, honestly. In
this situation, the Company can be grabbed from the form POV.
That said, I like the ability to log things from a Groovy
Calculation, so I have done so in this example. Why is
currency calculated here and not in GP? Great question.
Ah…this is just an example. This could be replaced with any
logic.

This is the simple part...execute the business rules

String sCompany =
operation.grid.getCellWithMembers().getMemberName("Company")
StringBuilder essCalc = StringBuilder.newInstance()
essCalc <<"""
FIX(&v_PlanYear,"OEP_Plan",$sCompany,"No_Center","GP_Model")
%Script(name:="FIN_Currency",application:="BreakFin",plantype:
="Fin")
ENDFIX
"""

println essCalc
return essCalc

After any specific business logic is executed, the last step
is to push the data to rFin. Rather than use a Smart Push
like above, this time a Data Map will be used. My preference
is to use Data Maps. Once the parameters are understood, I
think it is easier just to pass all the overrides in a generic

Data Map. Otherwise, the overrides are managed in multiple.
I certainly can’t argue performance, simplicity, or other
benefits for one method over another. It is completely a
preference.

//Declare string variables to house POV members
String sCompany = '"' + operation.grid.pov.find{it.dimName
=='Company'}.essbaseMbrName + '"'
//Execute datamap
operation.application.getDataMap("Fin Form
Push").execute(["Company":sCompany,"Scenario":"OEP_Plan","Vers
ion":"OEP_Working","Years":"&v_BudYear","Source":"GP_Model","C
urrency":"USD","Account":'ILvl0Descendants("Account")',"Cost_C
enter":"No_Center"],true)

Performance
I have presented this concept 3 times to about 300 people. I
always get this question.

OK, you change one product and it is fast. What happens if
you change all of them?

To be completely transparent, pieces of this are not much
faster, but the move from the detailed cube to the summary
cube (GP to fin/rFin in this example) is lightning fast and
makes no difference whether 1 or 30K products are changes. In
a real world situation, planners don’t change every line every
time.

Here is a summary of what I experienced. The first 4 are
changes made at a lev0 of channel and material group. The
second 4 are done at the top of those dimensions. The
calculation of the business logic changes for obvious
reasons. The push of the changed data changes for the same
reason. It is simply a question of volume. The
synchronization to the reporting consolidated cubes is not
impacted. It doesn’t matter whether 1 or 30k products are
changed because the data moving from the rGP cube is the same

because it is pushing at a total.

* All times are in seconds

Conclusion
The reason I looked into Groovy was because of this
example/client. The logic on the form was relatively
complicated and included allocations, then based on the
changes there were spreads through the months and additional
adjustments to make sure impacts to revenue were impacted
properly. The form save was taking minutes, and was
unacceptable, for obvious reasons. The Smart Push was taking
too long and had to be run in background, and would error due
to size periodically. That gave me the idea of the push on
save to the consolidated financial cube, and voila!

This introduces some incredible functionality that can change
the landscape of what we can do with PBCS. Much of this has
been discussed in previous pieces of this series, but the
addition of moving consolidated data (without running a
consolidation) throughout the applications is brand new.
There are some more things to the script that could be done to
even speed it up a little (only moving edited accounts and
months, for example). In the near future, we will jump into
this code at a more granular level and explain, line by line,
what everything is doing. We will also optimize this example
further. Look forward to that in the coming weeks. For now,
a solid example is available for you to use.

http://www.in2hyperion.com/wp-content/uploads/2018/05/Real-Time-Reporting-Comparison.png

What do you think?

