
Adventures in Groovy – Part
24: Don’t Be Stingy With
Reusable Code
Now that you are knee deep in Groovy, help yourself out and
reuse common code. The more you learn, the more efficient you
will be and will laugh at some of your initial attempts at
your Groovy calculations. If you are like me, you get excited
about all the possibilities and learn as you go. When you
find better ways to do something, or even preferable ways, you
end up with an application with inconsistent representations
of the same logic. You are too busy to go back and update all
the snippets you have improved, so it stays in a somewhat
messy state.

Do yourself a favor and start reusing some of the things you
need in every script. When you start doing more in Groovy
calculations, the more you can replicate the better. Making
some of the code business rule agnostic will make you more
productive and will create a consistent approach to
calculation strategy. An example of this would be variables
for the dimensions in the POV. Or, maybe a common map used to
push data from WFP to the P&L. Regardless of the use, as soon
as you see things that will be duplicated, put them in a
script. Scripts can be embedded in Groovy calculations just
like regular Business Rules.

Header Script
This is an example of something that I find useful for every
Groovy calculation I am writing. It accomplished a couple
things.

It stores the forecast months so data maps, smart1.
pushes, Essbase calculations, and grid builder

https://in2epbcs.com/2018/06/22/adventures-in-groovy-part-24-dont-be-stingy-with-reusable-code/
https://in2epbcs.com/2018/06/22/adventures-in-groovy-part-24-dont-be-stingy-with-reusable-code/
https://in2epbcs.com/2018/06/22/adventures-in-groovy-part-24-dont-be-stingy-with-reusable-code/

functions, can be dynamically execute on all months for
a budget and the out months for the forecast based on
the scenario selected.
It gets the numeric value for the current month to be2.
used in other localized calculations.
It creates a calendar object to get the current time for3.
logging performance.
The parameters are logged to the job console.4.

/*RTPS: {RTP_Month}*/

def Month = rtps.RTP_Month.toString().replaceAll("\"", "")
def MonthFix = rtps.RTP_Month.toString()
def months =
['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','
Nov','Dec']
def actualMonths = []
def forecastMonths = []

months.eachWithIndex {item, index ->
 if(index > months.findIndexOf{it == Month})
 forecastMonths << item
 else
 actualMonths << item
}

def actualMonthsFix = """\"${actualMonths.join('", "')}\""""
def forecastMonthsFix = """\"${forecastMonths.join('",
"')}\""""
def useMonths = []

if(operation.grid.pov.find{it.dimName
=='Scenario'}.essbaseMbrName.toString().toLowerCase().contains
('forecast'))
 useMonths = forecastMonths
else
 useMonths = months

//Get time for logging perforance
Calendar calendar = Calendar.getInstance()
calendar.setTimeInMillis(currentTimeMillis())

// Get the numeric value for the month (Jan=0)
int monthNumber = Calendar.instance.with {
 time = new Date().parse("MMM", Month)
 it[MONTH]
}

println "The current month number is $monthNumber"
println "The current month is $Month"
println "The current month (Fix) is $MonthFix"
println "The actual months (list) are ${actualMonths}"
println "The actual months (string) are ${actualMonthsFix}"
println "The forecast months (list) are ${forecastMonths}"
println "The forecast months (string) are
${forecastMonthsFix}"

Conversion Table
If the application moves data from more detailed plan types to
a consolidated P&L, it likely has conversions. This is an
example of an account map from a Gross Profit plan type to a
P&L plan type. How it is used will be explained in a later
submission, but it is used in every calculation that
synchronizes data from the GP to the P&L cube. Therefore, it
is a great candidate to have in a shared library (a script) so
it can be maintained in one place.

def acctMap = ['Cases':'Units',
 'Sales':'42001',
 'COGS':'50001',
 'Tax':'50015',
 'Chargeback':'56010',
 'Investment Gains':'50010',
 'Writeoffs':'56055',
 'Growth Attributed to New Products':'56300',
 'Samples':'56092'
]

Sharing Scripts
Just as scripts can be embedded in regular business rules, the

exact same syntax is used in Groovy calculations. Assume the
header script above is called Common Groovy and sits in an
application named FinPlan in the GP plan type. The inclusion
of the script into any Groovy calculation would be done by
inserting the following text.

%Script(name:=" Common Groovy
",application:="FinPlan",plantype:="GP")

Conclusion
These are just examples to get you thinking about how you can
reduce the headaches down the road when your Groovy
calculations need maintained. It can easily be expanded to
include common POV members and other common code. Be mindful
of how global this is as not all POV members are in all
forms. You might find it useful to have a script that is
shared everywhere and a few others shared for like
calculations or forms. You aren’t limited to only including
one shared script.

If you have a snippet you are using in all your Groovy
calculations, share it with the community. We always like to
get feedback and learn from each other.

