
Adventures in Groovy – Part
25: Groovy Functions
Building on the previous post and in the spirit of reusing
code, this will expand on the concept by walking through the
creation and use of functions in Groovy calculations.
Functions have huge value in reducing your Groovy calculations
and streamlining development.

Functions allow access to processes that either do some
action(s) or return a value to be used. There are hundreds of
cases I can think of where this is valuable. Here are a few
to get you started.

Getting the form POV, or a dimension in the POV1.
Creating and executing data maps (automatically using2.
the form POV, for example)
Identifying if the account should be converted to a3.
different currency (headcount will never be converted)
Logging repetative messages to the job console4.

Share your ideas with the community by posting a comment. I
am sure your thoughts will be valuable to the community!

These functions can be kept in a script that is reusable as
discussed in Part 24. Or, they can be created in individual
Groovy calculations if they are unique to a specific
calculation.

The Anatomy Of A Function
Functions can be dissected into three pieces.

A name (required)1.
The parameters (not required)2.
The logic (required)3.

The construction is below.

https://in2epbcs.com/2018/06/28/adventures-in-groovy-part-25-groovy-functions/
https://in2epbcs.com/2018/06/28/adventures-in-groovy-part-25-groovy-functions/
http://www.in2hyperion.com/2018/06/22/adventures-in-groovy-part-24-dont-be-stingy-with-reusable-code/

def name(parameter1, parameter2, ...)
{
 logic
}

The name is simple. This is a reference to the function and
the string you use to call it. I would suggest making it
meaningful, but not terribly long. Typing long names gets
annoying after a while! Also, come up with a consistent case
strategy. I normally capitalize the first letter in all but
the first word (getSomethingGood).

The function can have parameters. Unless it is just doing
some generic action, it will need something. It can be a
numeric value, a string, a boolean value, or really any other
type of object, like collections. Parameters are separated by
commas and can have default values.

The logic is what is inside the function and the whole purpose
to have a function. Functions can return values, execute some
action, or both.

Function Examples
Getting the POV
A lot of functions need members from the POV. Sometimes
surrounding them with quotes causes problems in the PBCS
functions so this gives an option to include or exclude them.
This also will return the member as a list for functions that
require a list, like data maps.

The second two parameters are not required unless quotes or a
list is needed as the return value.

def getPovMbr(dimension, boolean quotes = false, boolean
returnAsList = false) {
 if(returnAsList == true)
 // tokenize will split the value based on a delimiter and
convert the string to

 // a collection. Since this is one value and we just need
the one value converted
 // to a collection, I used ### as the delimiter since it
will never occur in any
 // dimension name.
 return dimension.tokenize('###')
 else if(quotes == true)

 return '"' +
operation.grid.pov.find{it.dimName==dimension}.essbaseMbrName
+ '"'
 else

 return
operation.grid.pov.find{it.dimName==dimension}.essbaseMbrName
}

Assuming the Plan is selected in the POV,

getPovMbr(“Scenario”) will return OEP_Plan
getPovMbr(“Scenario”,true) will return “OEP_Plan”
getPovMbr(“Scenario”,false,true) will return [OEP_Plan]

Print To The Log
Monitoring processing times of actions inside a calculation is
helpful to diagnose issues and manage performance. This
function will accept a message and return the duration from
the previous execution of the function.

def startTime = currentTimeMillis()
def procTime = currentTimeMillis()
def elapsed=(currentTimeMillis()-startTime)/1000

def printPerformance(message, boolean printTotalTime = false)
{
 // Gets the elapsed time
 elapsed=(currentTimeMillis()-procTime)/1000
 // Sets the new start time
 procTime = currentTimeMillis()
 // Print to log

 println
"**"
 println "$message = $elapsed secs"

 if (printTotalTime = true)
 println "Total Time = " + (currentTimeMillis()-
startTime)/1000 + " secs"
 println "***************************************
}

printPerformance(“The Data Map processed”,true) would write
the following message in the log.

**
The Data Map Processed = .204 secs
Total Time = 1.44 secs
**

This can obviously be customized to whatever you want to
show. As it is something used often, having a function saves
a lot of time, reduces the non-business related code in the
rule, and makes reading the business rule more digestible.

Rather than repeat all this,

time elapsed=(currentTimeMillis()-procTime)/1000
procTime = currentTimeMillis()
println
“**”
println “$message = $elapsed secs”
println “Total Time = ” + (currentTimeMillis()-
startTime)/1000 + ” secs”
println “***************************************

you simply call the function.

printPerformance(“The Data Map processed”,true)

Convert Account To USD
Groovy calculations don’t need to run Essbase calculations to
execute business logic. The logic can be executed in Groovy.
For a presentation in Orlando, I wanted to prove this. I
replicated a calculation that calculates revenue, gross
profit, and margins. It also needs to produce converted

currencies. As you know, accounts like units, headcount, and
rates don’t get converted even if the local currency is
something other than USD. In the example I showed at KScope,
a gridbuilder was used and every account needed to be
identified as an account that would be converted, or not
converted. The following function returns a true/false for an
account based on whether that account has a UDA of
IgnoreCurrencyConversion.

boolean convertCurrency(def account)
{

 Dimension AccountDim =
operation.application.getDimension("Account")
 Member AccountMbr = AccountDim.getMember(account)
 def memberProps = AccountMbr.toMap()
if(memberProps['UDA'].toString().contains('IgnoreCurrencyConve
rsion'))
 return false
 else
 return true
}

convertCurrency(“Units”) would return a false
convertCurrency(“Revenue”) would return a true

In the code, as it is looping through the accounts, it applies
the conversion only if it needs to.

if(convertCurrency(account)){
 sValuesUSD.add(currencyRates[cMonth].toString().toDouble() *
setValue)
 addcellsUSD << currencyRates[cMonth].toString().toDouble() *
setValue
}
else
{
 sValuesUSD.add(setValue)
 addcellsUSD << setValue
}

The full example of this is near the end of the ePBCS

Gridbuilder Deep Dive – Last Minute KScope Souvenirs in my
Kscope Wrap Up.

Conclusion
There are significant benefits to functions. As your growth
in this space grows, you will likely develop more of these
function and reuse them. Got an idea? Share it by posting a
comment!

http://www.in2hyperion.com/2018/06/15/adventures-in-groovy-part-23-disney-style/

