
Adventures in Groovy – Part
26: Is the POV a level 0
member?
One of the more surprisingly useful things that can be done in
a Groovy calculation is querying metadata. This was discussed
in Part 11: Accessing Metadata Properties, but I recently had
a situation where users could load data at parent levels and
have it allocated down to the bottom of the hierarchies.
Knowing if users selected a parent member in the hierarchy was
critical because the business process was different based on
whether it was a parent or a level 0 member. This can
obviously be checked in a business rule, but I had the need to
alter several functions in the process if the selection was a
parent. Smart Pushes and data synchronizations, as well as
the business rules that were executed, were dependent on the
level of the hierarchy selected. This is possible with
Groovy.

The Code Explained
Using a combination of methods, the children of any member can
be returned in a list. That list can be used for all kinds of
things. This focuses on getting the size of the list to
identify if it has children.

// Normally getting the POV Selected, but this is hard coded
for the example
def povProduct = '"' + "Tents" + '"'
// Setup a connection to the cube
Cube cube = operation.application.getCube("GP")
// Create a dimension object
Dimension productDim =
operation.application.getDimension("Product", cube)
// Create a member list - ILev0 of the member passed
def MemberList =

https://in2epbcs.com/2018/07/02/adventures-in-groovy-part-26-is-the-pov-a-level-0-member/
https://in2epbcs.com/2018/07/02/adventures-in-groovy-part-26-is-the-pov-a-level-0-member/
https://in2epbcs.com/2018/07/02/adventures-in-groovy-part-26-is-the-pov-a-level-0-member/
http://www.in2hyperion.com/2018/03/05/adventures-in-groovy-part-11-accessing-metadata-properties/

productDim.getEvaluatedMembers("ILvl0Descendants($povProduct)"
, cube)

println MemberList
println MemberList.size() == 1 // will print true or false

The MemberList variable now holds a list of all the members
(level 0 members below tents), including the member passed in
the function. This will always have at least one item in the
list, assuming the member exists in the dimension. If there
is more than 1, we know it has children, and therefore, is not
a level 0 member.

if(MemberList.size() == 1)
 {
 //actions taken if the POV is a level 0 selection
 }
 else
 {
 //actions taken if the POV is NOT a level 0 selection
 }

Summary
In applications where top down planning is needed, different
logic runs when data is entered at a parent verses when it is
entered at a leaf (lev0) member. This can be handled in an
Essbase calculation using @ISLEV0, but with Groovy, the fix
statement can be altered so that unnecessary logic isn’t
executed and data pushes are limited to only what is impacted.

Do you have an idea of how you might benefit from the results
of metadata queries? Come up with your own and share with the
group by commenting below.

