
Adventures in Groovy – Part
29: Troubleshooting Data
Movement With GridBuilder
One of the challenges working with grids is validating the
results. As with an Essbase calculation, Smart View reports
are developed to validate results. The same happens when
calculations, or data movement, is executed in Groovy via
grids. When the results in Smart View aren’t accurate, where
do you go?

Make It Simple
By now you have probably used the grid iterator to iterate
through cells to validate data, write values to the log, and
check to see if the cells have been edited. The same can be
done with GridBuilders. All aspects of the grid can be
logged. If done correctly, this can be copied directly from
the log and pasted into excel to accomplish 2 things. One,
you have a report in Excel. Two, you have a Smart View ready
ad-hoc report that can be refreshed.

Send The Grid To The Log
Grids can be different so this may be a start for you to
construct this validation. This example has 2 column
headers. The rest should be very close and likely completely
reusable. To break this down, we have a source grid we are
pulling data from to create a grid to send to another plan
type. Basically, this loops through the members in the POV
and replicates rows for the number of columns in the grid.
This is repatative, but it will provide a retrievable Smart
View.

// Loop through the POV to create column headers for each
povmbrs*.essbaseMbrName.each{ POV ->

https://in2epbcs.com/2018/07/30/adventures-in-groovy-part-29-troubleshooting-data-movement-with-gridbuilder/
https://in2epbcs.com/2018/07/30/adventures-in-groovy-part-29-troubleshooting-data-movement-with-gridbuilder/
https://in2epbcs.com/2018/07/30/adventures-in-groovy-part-29-troubleshooting-data-movement-with-gridbuilder/

 // Add a blank column for the row members
 print ','
 // Loop through the columns and repeat the POV member for
each of the columns
 colmbrs[0]*.essbaseMbrName.size().times{
 print POV + ','
 }
 // Print a line return for the next POV member
 println ''
}
//Print a blank column and then each of the column headers for
both headers
println ',' + colmbrs[0]*.essbaseMbrName.join(',')
println ',' + colmbrs[1]*.essbaseMbrName.join(',')

At this point, the log will show the column headers. The
following is created while looking through the source grid and
produces the row header and the respective data for each of
the column headers.

...{
sValues.add(it.crossDimCell(cMonth.toString(),cCurrency.toStri
ng()).data)

 addcells <<
it.crossDimCell(cMonth.toString(),cCurrency.toString()).data
}
// After the variables are created with the numeric data to be
used when creating the rows, the row is created
finGrid.addRow([acctMap.get(it.getMemberName('Account'))],addc
ells)
// Print to the log exactly what is being used to create the
grid
println "${it.getMemberName('Account')}" + "," +
sValues.join(",")

At this point, the entire Smart View is created in the log and
can be copied and pasted to Excel. The log will look
something like this.

When pasted into a text editor that doesn’t wrap, it looks a
little more palatable!

Create An Excel Report / Smart View Ad-
hoc
At this point, you are ready to get this into Excel. Select
the part of the log related to the validation and copy it to
Excel. I normally wrap the Groovy code above in a few println
statements so it is easier to identify what is related to this
validation effort and what isn’t.

http://www.in2hyperion.com/wp-content/uploads/2018/05/GridBuilder-Log-Validation.png
http://www.in2hyperion.com/wp-content/uploads/2018/05/GridBuilder-Log-Validation-Non-Wrapped.png

println '*************** BEGIN VALIDATION ***************'
// CODE ABOVE
println '*************** END VALIDATION ***************'

If it doesn’t parse by comma automatically, go to the Data
ribbon and select the option to convert the selection to Text
to Columns and select comma. This will parse it to what is
required. This may not need to be done depending on a few
things, which won’t be discussed here. The result of the
example above looks like this.

Finishing
Now there is an easy viewable report of what is being used to
create the grid. If this data is incorrect, move backwards in
the process to the source grid and fix it. This should
provide all the information to do that. Is the POV correct?
For me, this is normally the issue – I am pulling the wrong
POV. Once the source grid POV is changed, go through the
process again and you should see better results.

http://www.in2hyperion.com/wp-content/uploads/2018/05/GridBuilder-Excel-Validation.png

