
Adventures in Groovy – Part
31: Benefits of Running Logic
in Groovy (Bypass Essbase)
Say what? An application where no calculations are performed
with the Essbase calculation engine?

Business logic, currency, and every other calculation can be
performed within Groovy outside of Essbase. I don’t know how I
feel about this yet, but the thought of building this in
calculations on an ASO cube is intriguing. The elimination of
consolidating BSO cubes and data movements with Smart Pushes
is also interesting. Some of my coworkers have built entire
applications this way with great success and speed. I wanted
to replicate this on a small scale to identify the pros and
cons of this methodology, and here is what I found.

In my adventures, I found that performance was similar.
Sometimes it was quicker, sometimes a little slower. I did not
do large allocations, but I have done account calculations and
currency conversion. I have done it on form save as well as
globally. Complexity varies. If you are a Groovy expert, it
likely seems less complex. If you are an Essbase developer, it
might seem more complicated. Code can be reused by developing
functions and placing them in scripts, just like Essbase
scripts can be embedded into rules.

One thing I did find appealing for a user is that change
history is complete! If you have dabbled with this, you will
know that the change history only includes edited data by a
user. So, calculated accounts don’t show any history. When the
calculations are done in Groovy, the results are stored in a
grid, and saved to the database. This mimics a user updating
the values and reflects in the change history. This, I think,
is pretty cool.

https://in2epbcs.com/2018/10/17/adventures-in-groovy-part-31-benefits-of-running-logic-in-groovy-not-essbase/
https://in2epbcs.com/2018/10/17/adventures-in-groovy-part-31-benefits-of-running-logic-in-groovy-not-essbase/
https://in2epbcs.com/2018/10/17/adventures-in-groovy-part-31-benefits-of-running-logic-in-groovy-not-essbase/

Another benefit is that calculated data in a grid is
reflective of the inputs. With prompts, or when data isn’t
validated, the form shows the results of the calculations
before the data is saved in the form. I have been asked by
many if it is possible to show the results real time before
save (like an adhoc form with formulas built in Excel). This
is now possible if you get creative.

Before we jump into the code, it might make sense to
understand what dimensions/members are in the POV.

Code Introduction
The following calculation is replicating what an Essbase
calculation is performing.

Performs simple math to calculation revenue and costs –1.
mostly simple multiplication and division
Looks up the currency rates for the Entity selected and2.
applies the exchange rate to the account if it is
identified as an account that should be converted
(ignores statistical accounts, for example)
Converts the account from ProdRev to the representative3.
account in the P&L plan type.

http://www.in2hyperion.com/wp-content/uploads/2019/10/New-Product-Form-Design.jpg

Submits the calculated results to both the ProdRev BSO4.
and ASO (in a real world situation, you may decide to
exclude the BSO cube and connect the form and write the
data directly to the ASO cube)

As previously mentioned, there are a couple way to do this.
This method runs post save and pulls the necessary data from
the cube and created two GridBuilders to submit the calculated
accounts back to the databases. It would likely be more
productive to pull the data from the grid the user entered it,
assuming there were no other data points that were needed to
calculate all the accounts. This would reduce the performance
by one retrieve. This also connects to the BSO cube, and this
may not even be in play if all the calculations were executed
in Groovy and the forms connected to the ASO cube. So, I
welcome all questions and constructive feedback, but
understand this is one way to do this and it will be used to
demonstrate the functionality. It doesn’t necessarily
represent the best way to architect the plan types.

The data entry form is below. Some of the dimensions are
hidden in the POV or Page Header. The columns just include the
Period dimension. The rows, and this is important to
understand because of the way the code loops, contain the
vendors and the accounts.

Explaining the Code
On with the show! The first piece includes a couple functions
that will be referenced in loops. I find repetitive logic like
this placed in function to be more readable, but it certainly
isn’t required.

// This function returns the POV member with or without quotes
// This is one operation I want to look into as it may not be
required or may be executed better
def getPovMbr(member, boolean quotes = false) {
 if(quotes == true)

 return '"' +
operation.grid.pov.find{it.dimName==member}.essbaseMbrName +
'"'
 else

 return
operation.grid.pov.find{it.dimName==member}.essbaseMbrName
}
// This function returns a 1 if the value is 0. The primary
use of this is currency
// exchange. In this example, the planners didn't enter 1 for
a USD to USD conversion,
// so somewhere a 1 needed to be assumed.
def checkZero(double dVal=0) {
 if(dVal == 0) {

http://www.in2hyperion.com/wp-content/uploads/2019/10/Groovy-Form-View.jpg

 return 1
 }
 else {
 return dVal
 }
}
// This returns a true or false as to whether the account has
a UDA identifying that
// account as one that either does or doesn't get converted.
boolean convertCurrency(def account)
{

 Dimension AccountDim =
operation.application.getDimension("Account")
 Member AccountMbr = AccountDim.getMember(account)
 def memberProps = AccountMbr.toMap()
if(memberProps['UDA'].toString().contains('IgnoreCurrencyConve
rsion'))
 return false
 else
 return true
}

The next piece is setting each POV member in a variable. If
you have read some of my other posts, there are better ways to
do this. For the sake of simplicity and trying to explain
other concepts, I have chosen to do it this way.

// Set each POV to its own variable
String sCompany =
operation.grid.getCellWithMembers().getMemberName("Company")
String sVersion =
operation.grid.getCellWithMembers().getMemberName("Version")
String sScenario =
operation.grid.getCellWithMembers().getMemberName("Scenario")
String sYear =
operation.grid.getCellWithMembers().getMemberName("Years")
String sMaterialGroup =
operation.grid.getCellWithMembers().getMemberName("Material_Gr
oup")
String sChannel =
operation.grid.getCellWithMembers().getMemberName("Channel")

String sSource =
operation.grid.getCellWithMembers().getMemberName("Source")

At this point, the administrative stuff is out of the way. The
first thing this example does functional is to get the
currency exchange rates for the month of the Entity selected.
This would be a little more complex if it were converting
income statement and balance sheet accounts because it would
need to distinguish the difference so the correct rate
(average or ending) was applied.

// Define the map to hold the appropriate rate. This will be
a map that has an entry for each month, with the value equal
to
// the conversion rate - Jan:.878, Feb:.899, ...
def currencyRates = [:]
// Build currency for the company by retrieving the correct
POV from the plan type
Cube lookupCube = operation.application.getCube("ProfRev")
DataGridDefinitionBuilder builder =
lookupCube.dataGridDefinitionBuilder()
builder.addPov(['Years', 'Scenario',
'Version','Channel','Material_Group','Source','Vendor','Curren
cy','Account'],[[sYear],[sScenario],[sVersion],['No_Channel'],
['No_Material_Group'],['Input'],['No_Vendor_Assigned'],['Local
'],['End_C_Rate']])
builder.addColumn(['Period'], [
['ILvl0Descendants("YearTotal")']])
builder.addRow(['Company'], [[sCompany]])
DataGridDefinition gridDefinition = builder.build()

// Load the data grid from the lookupCube to the Map
lookupCube.loadGrid(gridDefinition, false).withCloseable {
dataGrid ->
 dataGrid.dataCellIterator().each{ rate ->
currencyRates.put(rate.getMemberName('Period'),checkZero(rate.
data))
 }
}

Now that we have a map of the currency rates, the next piece

will create the grids that will submit the calculated results
back to the cubes. Remember, in this example, the data is
being entered to a plan type that is a BSO cube. This will
submit the results back to the BSO cube, but also to the
corresponding reporting (ASO) cube. Since this is done post
save (and we will assume post Smart Push), the data needs to
be update in both places. Is this the best and most efficient
way to do this? Probably not. Again, take it for what it is –
an education on bypassing the Essbase calculations!

// Get list of vendors that are in the rows
def listVendors =
operation.grid.rows.headers*.essbaseMbrName.collect {vendor,
account -> return vendor}.unique()

// Create a list of calculated members that need to be in the
grid
def listAccounts =
["Regular_Cases","Net_Sales","prodRev_Level_1","Cost_of_Sales_
without_Samples","prodRev_Level_2","Depletion_Allowance_Manual
_Chargeback"]

//prodRev Grid Setup
Cube prodRevCube = operation.application.getCube("prodRev")
Cube rprodRevCube = operation.application.getCube("rprodRev")

DataGridBuilder prodRevGrid =
prodRevCube.dataGridBuilder("MM/DD/YYYY")
DataGridBuilder rprodRevGrid =
rprodRevCube.dataGridBuilder("MM/DD/YYYY")

prodRevGrid.addPov(sYear,sScenario,sVersion,sChannel,sMaterial
Group,sSource,sCompany)
rprodRevGrid.addPov(sYear,sScenario,sVersion,sChannel,sMateria
lGroup,sSource,sCompany,'MTD')
prodRevGrid.addColumn('Jan','Feb','Mar','Apr','May','Jun','Jul
','Aug','Sep','Oct','Nov','Dec')
rprodRevGrid.addColumn('Jan','Feb','Mar','Apr','May','Jun','Ju
l','Aug','Sep','Oct','Nov','Dec')

The next piece is replicating what would be in a typical

Essbase calculation. This is the business logic and currency
conversion.

// Define the currencies to be updated and sent back to the
database
def lstCurrency = ["Local","USD"]
// loop through the grid the user entered their updates. This
will loop through each vendor, then loop
// through each account for each vendor
listVendors.each{ vendor ->
 listAccounts.each{ account ->
 // Create two variables to hold the calculated results for
local and USD
 def sValues = []
 def sValuesUSD = []
 // Create two variables to hold all the monthly calculated
results to be added to the grid to submit
 List addcells = new ArrayList()
 List addcellsUSD = new ArrayList()
 // Run for 12 months - this would likely need to be
dynamic for a form that included
 // the option for forecast and plan
['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','
Nov','Dec'].each{cMonth ->
 // Calculate all the accounts
 double setValue
 switch (account) {
 case "Net_Sales":

 setValue =
operation.grid.getCellWithMembers("Avg_Price/Case_Inp",cMonth.
toString(),vendor.toString()).data *
operation.grid.getCellWithMembers("Regular_Cases",cMonth.toStr
ing(),vendor.toString()).data
 break
 case "prodRev_Level_1":

 double netSales =
operation.grid.getCellWithMembers("Avg_Price/Case_Inp",cMonth.
toString(),vendor.toString()).data *
operation.grid.getCellWithMembers("Regular_Cases",cMonth.toStr
ing(),vendor.toString()).data
 setValue = netSales *

operation.grid.getCellWithMembers("prodRev_1_%_Inp",cMonth.toS
tring(),vendor.toString()).data
 break
 case "Cost_of_Sales_without_Samples":

 double netSales =
operation.grid.getCellWithMembers("Avg_Price/Case_Inp",cMonth.
toString(),vendor.toString()).data *
operation.grid.getCellWithMembers("Regular_Cases",cMonth.toStr
ing(),vendor.toString()).data
 double prodRev1 = netSales *
operation.grid.getCellWithMembers("prodRev_1_%_Inp",cMonth.toS
tring(),vendor.toString()).data
 setValue = netSales - prodRev1
 break
 case "prodRev_Level_2":

 double netSales =
operation.grid.getCellWithMembers("Avg_Price/Case_Inp",cMonth.
toString(),vendor.toString()).data *
operation.grid.getCellWithMembers("Regular_Cases",cMonth.toStr
ing(),vendor.toString()).data
 setValue = netSales *

operation.grid.getCellWithMembers("prodRev_2_%_Inp",cMonth.toS
tring(),vendor.toString()).data
 break
 case "Depletion_Allowance_Manual_Chargeback":

 double netSales =
operation.grid.getCellWithMembers("Avg_Price/Case_Inp",cMonth.
toString(),vendor.toString()).data *
operation.grid.getCellWithMembers("Regular_Cases",cMonth.toStr
ing(),vendor.toString()).data
 double prodRev1 = netSales *
operation.grid.getCellWithMembers("prodRev_1_%_Inp",cMonth.toS
tring(),vendor.toString()).data
 double prodRev2 = netSales *
operation.grid.getCellWithMembers("prodRev_2_%_Inp",cMonth.toS
tring(),vendor.toString()).data
 setValue = netSales - prodRev1
 break
 default:

 setValue =
operation.grid.getCellWithMembers(account.toString(),cMonth.to

String(),vendor.toString()).data
 break
 }
 // Update the variables that will be used to create the
grid rows
 sValues.add(setValue)
 addcells << setValue
 // Convert Currency if account should be converted
 if(convertCurrency(account) == true){
sValuesUSD.add(currencyRates[cMonth].toString().toDouble() *
setValue)

 addcellsUSD <<
currencyRates[cMonth].toString().toDouble() * setValue
 }
 else
 {
 sValuesUSD.add(setValue)
 addcellsUSD << setValue
 }
 }
 // After all 12 months are traversed calculated, add local
and USD to the grid
prodRevGrid.addRow([account.toString(),vendor.toString(),'Loca
l'],addcells)
prodRevGrid.addRow([account.toString(),vendor.toString(),'USD'
],addcellsUSD)
rprodRevGrid.addRow([account.toString(),vendor.toString(),'Loc
al'],addcells)
rprodRevGrid.addRow([account.toString(),vendor.toString(),'USD
'],addcellsUSD)
 }
}

The last piece is to submit the grids. The following will
write to the log the number of cells accepted and rejected.

// After all vendors and account have been calculated, submit
the grid to the respective database
DataGridBuilder.Status status = new DataGridBuilder.Status()
DataGridBuilder.Status rstatus = new DataGridBuilder.Status()
DataGrid grid = prodRevGrid.build(status)
DataGrid rgrid = rprodRevGrid.build(rstatus)

println("Total number of cells accepted:
$status.numAcceptedCells")
println("Total number of cells rejected:
$status.numRejectedCells")
println("First 100 rejected cells: $status.cellsRejected")
prodRevCube.saveGrid(grid)
println("Total number of cells accepted:
$rstatus.numAcceptedCells")
println("Total number of cells rejected:
$rstatus.numRejectedCells")
println("First 100 rejected cells: $rstatus.cellsRejected")
rprodRevCube.saveGrid(rgrid)

So…

Why Do this?
This would add complexity for those who don’t know Groovy. It
is a completely different thought process. But there are
benefits.

Elimination of the BSO application creates a simpler
model.
There is no requirement of data synchronization between
the BSO and ASO cube.
Users will see cell history for all data that was
changed, not just the data changed by a user directly.

That is not to say there aren’t drawbacks, because there are.
I am sure if you are experienced, you are already asking
questions about clearing data, large allocations, and several
other necessary components.

Is It Worth It?
Honestly, I don’t know yet. This is a complete paradigm shift
in our world. The thought of calculating everything in Groovy
and not having a BSO plan type is just completely foreign to
me. The exploration of this option and documenting here surely
proves my interest is peaked! Large allocations seem to be

slower than BSO Essbase calculations. Everything else seems to
be as quick or quicker. I think in the short term, having both
gives us the best of both worlds, even with the additional
need to synchronize the data between the two. Long term? Who
knows. I never thought I would even be entertaining it, so I
am not closing my mind to the possibility.

What do you think?

