
Adventures in Groovy – Part
33: Mapping Members Between
Plan Types
Groovy collections are used all throughout the ePBCS API. If
you are not familiar with collections, you may want to take a
look at Adventures in Groovy – Part 27: Understanding
Collections before you continue. Maps, which are a type of
collection, are very useful when moving data between different
applications that have different member names representing the
same data. In a the example below, data is moving from a
product revenue cube to a financial cube. In the detailed
cube, the member names are more descriptive, like Net Sales.
In the financial application, the same data is a true account
number from the GL, and names 42001. Mapping data between
these two can easily be done with Groovy maps.

Introduction
There are two components to understanding the use of these
maps. First, the map must be defined for use. The
construction of the map is a delimited list of items. Each of
the items is made up of an key and a value. These are
separated by a colon.

//set account map
def acctMap = ['Units':'Units',
 '42001-Product Sales':'Net Sales',
 '50001-Cost of Sales':'COGS',
 '50015-Write-offs':'Write-offs',
 '56010-Chargebacks':'Customer Satisfaction
Discount',
 '50010-Sales and Discounts':'Sales and
Discounts',
 '56055-Overstock Discount':'Overstock
Discount',

https://in2epbcs.com/2018/11/04/adventures-in-groovy-part-33-mapping-members-between-plan-types/
https://in2epbcs.com/2018/11/04/adventures-in-groovy-part-33-mapping-members-between-plan-types/
https://in2epbcs.com/2018/11/04/adventures-in-groovy-part-33-mapping-members-between-plan-types/
http://www.in2hyperion.com/2018/07/11/adventures-in-groovy-part-27-understanding-collections/
http://www.in2hyperion.com/2018/07/11/adventures-in-groovy-part-27-understanding-collections/

 '56300-Customer Satisfaction
Discount':'Customer Satisfaction Discount',
 '56092-Multi-Purchase Discount':'Multi-Purchase
Discount',
 '56230-Open Box Discount':'Open Box Discount',
 '56200-Damage Container Discount':'Damage
Container Discount',
 '56205-Damaged Box Discount':'Damaged Box
Discount',
 '56090-Group Purchase Discount':'Group Purchase
Discount']

The second piece is retrieving the mapped value. The value on
the left of the colon is referenced and the value on the right
will be returned. The following would return 56230.

[acctMap.get("56230-Open Box Discount")]

A fully vetted example follows of moving data from one
database to several others. The function’s use is embedded in
a loop, so rather than a hard coded value, the member of the
account dimension is used as the accounts (rows in the form)
are being iterated. It looks like this.

[acctMap.get(it.getMemberName('Account'))]

Working Use Case
The map above is used in several places for several reasons.
First, the map is created. Second, the map is iterated and
the key is used to create a data grid for all the values that
will be copied, or synchronized, to the destination cube.
Third, the map is used to lookup the converted value to create
the grid connected to the destination. this is a complete
working example. The items in red are specific to the map and
its use.

//Dimension employeeDim =
operation.application.getDimension("Account")

//**

// Data Movement between Apps
//**

// Get POV
String sCompany =
operation.grid.getCellWithMembers().getMemberName("Company")
def sMaterialGroup =
operation.grid.getCellWithMembers().getMemberName("Material_Gr
oup")
String sChannel =
operation.grid.getCellWithMembers().getMemberName("Channel")

def lstProducts = []
operation.grid.dataCellIterator({DataCell cell ->
cell.edited}).each{
 lstProducts.add(it.getMemberName("Product"))
}

String strProducts =
"""\"${lstProducts.unique().join('","')}\""""
println "data push running for " + strProducts

if(operation.grid.hasSmartPush("Prod_SmartPush") &&
lstProducts)
operation.grid.getSmartPush("Prod_SmartPush").execute(["Produc
t":strProducts,"Currency":'"USD","Local"'])

//set account map
def acctMap = ['Units':'Units',
 '42001-Product Sales':'Net Sales',
 '50001-Cost of Sales':'COGS',
 '50015-Write-offs':'Write-offs',
 '56010-Chargebacks':'Customer Satisfaction
Discount',
 '50010-Sales and Discounts':'Sales and
Discounts',
 '56055-Overstock Discount':'Overstock
Discount',
 '56300-Customer Satisfaction

Discount':'Customer Satisfaction Discount',
 '56092-Multi-Purchase Discount':'Multi-Purchase
Discount',
 '56230-Open Box Discount':'Open Box Discount',
 '56200-Damage Container Discount':'Damage
Container Discount',
 '56205-Damaged Box Discount':'Damaged Box
Discount',
 '56090-Group Purchase Discount':'Group Purchase
Discount']

Cube lookupCube = operation.application.getCube("rProd")
DataGridDefinitionBuilder builder =
lookupCube.dataGridDefinitionBuilder()
builder.addPov(['Years', 'Scenario', 'Currency', 'Version',
'Company','Store_Type','Department','Source','Product','View']
, [['&v_PlanYear'], ['OEP_Plan'], ['Local'], ['OEP_Working'],
[sCompany],['Store_Type'],['Total_Department'],['Tot_Source'],
['Tot_Product'],['MTD']])
builder.addColumn(['Period'], [
['ILvl0Descendants("YearTotal")']])
for (e in acctMap) {
 builder.addRow(['Account'], [[e.key]])
}
DataGridDefinition gridDefinition = builder.build()

// Load the data grid from the lookup cube
DataGrid dataGrid = lookupCube.loadGrid(gridDefinition, false)
def povmbrs = dataGrid.pov
def rowmbrs = dataGrid.rows
def colmbrs = dataGrid.columns
def tmpColMbrs = []

//Fin Grid Setup
Cube finCube = operation.application.getCube("Fin")
Cube rfinCube = operation.application.getCube("rFin")
DataGridBuilder finGrid =
finCube.dataGridBuilder("MM/DD/YYYY")
DataGridBuilder rfinGrid =
rfinCube.dataGridBuilder("MM/DD/YYYY")

finGrid.addPov('&v_PlanYear','OEP_Plan','Local','OEP_Working',
sCompany,'Prod_Model')
rfinGrid.addPov('&v_PlanYear','OEP_Plan','Local','OEP_Working'
,sCompany,'Prod_Model','MTD')
def colnames = colmbrs[0]*.essbaseMbrName

String scolmbrs = "'" + colnames.join("', '") + "'"
finGrid.addColumn(colmbrs[0]*.essbaseMbrName as String[])
rfinGrid.addColumn(colmbrs[0]*.essbaseMbrName as String[])

dataGrid.dataCellIterator('Jan').each{ it ->

def sAcct = "${acctMap.get(it.getMemberName('Account'))}"
 def sValues = []
 List addcells = new ArrayList()
 colmbrs[0].each{cName ->
 sValues.add(it.crossDimCell(cName.essbaseMbrName).data)
 addcells << it.crossDimCell(cName.essbaseMbrName).data
 }

finGrid.addRow([acctMap.get(it.getMemberName('Account'))],addc
ells)
rfinGrid.addRow([acctMap.get(it.getMemberName('Account'))],add
cells)
}
DataGridBuilder.Status status = new DataGridBuilder.Status()
DataGridBuilder.Status rstatus = new DataGridBuilder.Status()
DataGrid grid = finGrid.build(status)
DataGrid rgrid = rfinGrid.build(rstatus)

finCube.saveGrid(grid)
rfinCube.saveGrid(rgrid)

Finishing Up
This is a relatively simple concept and not terribly difficult
to implement. It is also something most will benefit from
when synchronizing data with the dataGridBuilder. Have
something to add? Post a comment and I will get back to you
promptly.

