
Adventures in Groovy – Part
37: Improving The User
Experience With AutoFill
To date, we have talked about the performance improvements
Groovy introduces, as well as the creative validation we can
add. One thing that hasn’t been covered yet is the ability to
add functionality to make the input easier for a planner.
Replicating changes through the months, resetting the values
back to the defaults, and many other concepts can be developed
to make the user’s lives easier.

Use Case / Example
The following example is something most applications will
encounter, especially in workforce planning and capex. This
form has the level of an employee. This functionality would
be the same for things like title and employment status.
Basically, the user would typically change a month and
simulate that change to all remaining months. Or, they might
change the status to Maternity Leave for 3 months and then
back to Active.

What this functionality will do is allow the planner to change
the month from active to Maternity Leave, assume every month
after that will be updated for them, until a month is
changed/edited. If this is still not clear, I think the
following 3 steps will clear it up.

The planner opens the form and the employee is set to a1.
Trainee for all months. The level progression is
Trainee, Associate, Consultant.
The planner changes the person’s level from Trainee to2.
Associate in March, and to Consultant in July.
The planner saves the form and the result is that the3.

https://in2epbcs.com/2018/12/10/adventures-in-groovy-part-37-improving-the-user-experience-with-autofill/
https://in2epbcs.com/2018/12/10/adventures-in-groovy-part-37-improving-the-user-experience-with-autofill/
https://in2epbcs.com/2018/12/10/adventures-in-groovy-part-37-improving-the-user-experience-with-autofill/

employee is promoted to Associate in March. The
calculation automatically changes April, May, and June
to Associate – basically it copies the change to the
next month unless the next month is edited. It
continues that pattern through the 12 months, so the
employee is promoted to a Consultant in July and that is
copied through December.

This may not seem life changing, but it does reduce the effort
for a planner and reduce the possibility that they don’t know
they have to change all the months manually and cause
inconsistencies in the budget.

The Code
The following calculation assumes only one employee is on the
form. This would need slightly updated to reset when the
employee changed, or when the iteration went to the next line
in the form. This also needs to be executed before save.
Let’s jump in.

The first thing we are going to do is set some parameters.

def update = false
def runTotal = 0
def change = false
def Months =
["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","
Nov","Dec"]

http://www.in2hyperion.com/wp-content/uploads/2018/11/PBCS_Fill_Groovy.jpg

Next, we will loop through the cells. We are only looping
through the rows where the account is equal to “Level.” As
this goes from January to December, it keeps track of the
value the cell should be changed to, or the last edited cell’s
value. If it gets to a cell that is edited, it resets the
variable so that any cell after that will be updated to the
most recent change.

operation.grid.dataCellIterator('Level').each { cell ->
 // If the cell is edited, change the variable so it knows
that the remaining
 // months need to be changed
 if(cell.isEdited()){
 change = true
 }
 // If the month is not edited and a prior month has been
changed, update the
 // value to the prior month's value
 else if(change == true){
 def lastMonth = Months.findIndexOf{it ==

cell.getPeriodName()} - 1
cell.setFormattedValue(cell.crossDimCell(Months[lastMonth]).fo
rmattedValue)
 }
}

Not Rocket Science
Like I previous stated, this isn’t going to be the difference
between a project success and failure like the performance
improvements that have been discussed, but it is a very simple
thing that can be added to give your application some polish.
Also, I can’t say it enough, little things like this give
users confidence and also reduce the possibility of human
error, giving the budget more validity and trust.

