
Adventures in Groovy – Part
39: First Common Parent
I can’t tell you how many times I have been at a client and
they wanted to replicate eliminations at the first common
parent like HFM, or some other consolidations system. Maybe
there is a good way to do this, but I could never find an
efficient and effective way to accomplish it with Essbase
calculations. Well, that is history. This is yet another
example of how to solve an historically complex problem very
simply.

What Is The First Common Parent
Eliminations functionality addresses the posting of inter-
company eliminations in scenarios where a full legal
consolidation model is not required, such as within a standard
financial model. An example would be eliminating sales to
another entity inside the organization so the total sales of
the organization is not inflating the real sales of the
organization. This is typically done at the first node that
consolidates the two entities, or first common parent. In the
example below, which will be used in the code below, we need
to find the first common parent to do the eliminations for
entity S253 and S592. The hierarchy below shows that the
first parent of these two members is Mountain Division. This
is the entity that will calculate and hold the eliminated
sales.

https://in2epbcs.com/2019/01/24/adventures-in-groovy-part-39-first-common-parent/
https://in2epbcs.com/2019/01/24/adventures-in-groovy-part-39-first-common-parent/

Surprisingly Easy With Groovy
The Groovy classes available to us have the ability to query
metadata. This allows a calculation to return all kind of
things, like the ancestors of members. Groovy takes over the
rest by comparing the arrays returned.

For this example, the calculation prompts for two members. In
an real-world example, these would likely be defined in the
calculation, or maybe with UDAs or attributes. The prompts in
this example, C1 and C2, are run time prompts connected to the
hierarchy above. Once the members are defined, the next step
is to query the ancestors of each of the two members.

http://in2hyperion.com/wp-content/uploads/2019/01/Groovy-First-Commonn-Parent-PBCS.jpg

First, a connection to the application that has the dimension
and members is defined. Once that is done, a dimension object
is created that is used to execute the queries. Since we need
ancestors, we use IAncestors.

/*RTPS:{C1} {C2}*/
Cube cube = operation.application.getCube("Fin")
Dimension companyDim =
operation.application.getDimension("Company")
List companyOne =
companyDim.getEvaluatedMembers("IAncestors(${rtps.C1.toString(
)})", cube)
List companyTwo =
companyDim.getEvaluatedMembers("IAncestors(${rtps.C2.toString(
)})", cube)

companyOne returns an array with the following values.

[S253, AZ_Stores, Mountain_Div, West_Reg, US_Stores,
Tot_Company]

companyTwo returns an array with these values.

[S592, MT_Stores, Mountain_Div, West_Reg, US_Stores,
Tot_Company]

The hard part, if you consider that hard, is over. Now that
the two arrays are defined, a snazzy Groovy method are used.
The intersect method will return the common elements of two
lists.

The order of the elements returned by the PBCS classes is
ordered from the bottom of the hierarchy to the top. The
first element would be the first common parent! This example
doesn’t illustrate it but this would work for staggered

http://in2hyperion.com/wp-content/uploads/2019/01/Groovy-Common-Parent-PBCS-Elimination-Example.jpg

hierarchies just the same.

List commonParents = companyOne.intersect(companyTwo)
println "First common parent for ${rtps.C1.toString()} and
${rtps.C2.toString()} is ${commonParents[0]}"

The println results in the following message to the job
console.

First common parent for "S253" and "S592" is Mountain_Div

That is it boys and girls. In 6 lines of scripting (and it
could be less as some variables are introduced to clearly
articulate the process and methods), the first common parent
is identified. The most difficult part would be the business
logic to accomplish the actual business requirement.

All Done
Now that you know how to get the first common parent, this can
be used to dynamically create the appropriate Essbase
calculations to provide all the functionality that is needed.
If you like this, share it with the community. Post comments
if you have any questions. I love getting feedback.

