
Adventures in Groovy – Part
41: RTP Interpretation Modes
Have you ever used a variable and received this error? Error:
Unable to retrieve variable [variable name] deployed in the
application [app name] Rule [app name].[plan type name].[rule
name]. You likely saw this when a Groovy variable was used
inside of {}. I finally had the issue explained to me working
with the Oracle PBCS development group today. God bless them
for being so gracious to help me through some of these issues!
You know who you are, and I can’t thank you enough for your
time!

ePBCS interprets Groovy before the Groovy compiler is engaged.
There are multiple interpretation modes (my words) and varies
based on whether run time prompts are initiated by including
/*RTPS:*/ in the calculation.

WHAT YOU NEED TO KNOW
Long story short is this, but I encourage you to read on for a
deeper dive into what is happening.

EPBCS parses all Groovy scripts before executing it to
identify the run time prompts used by the script. The way it
identifies the run time prompts is by looking for explicit
declaration of the run time prompts in a comment in the
following format:

/*RTPS: {rtpName}*/

The reason for this is because there are many expressions
(closures, string interpolation etc) in Groovy that use curly
braces so the old way of defining run time prompts in curly
braces {rtpName} is no longer recommended. Instead, the use of
rtps.rtpName is recommended to reference run rime prompts
inside a Groovy script.

https://in2epbcs.com/2019/04/21/adventures-in-groovy-part-41-rtp-interpretation-modes/
https://in2epbcs.com/2019/04/21/adventures-in-groovy-part-41-rtp-interpretation-modes/

Without the explicit declaration in the /*RTPS */ comment, the
parser will try to interpret Groovy expressions inside {} as
run time prompts causing the following error:

Error: Unable to retrieve variable [variable name] deployed in
the application [app name] Rule [app name].[plan type
name].[rule name].

If you are using RTPs without defining them in the comment, I
recommend that the script be updated to add the RTPS comment.
The interpretation method of assuming everything in {} is an
RTP will be deprecated in future releases. To conclude, if no
RTPs are used, add /*RTPS:*/ to the script so that variables
inside the {} are interpreted as Groovy variables.

Example: Interpretation Without RTPS
Comment
If you have worked with run time prompts, you know (or thought
you knew) that they had to be defined in what looks like a
comment.

/*RTPS: {rtp_Period} {rtp_Year}*/

This is not true, however. Theoretically, the /*RTPS:*/
doesn’t have to be added to use run time prompts, which was
news to me. When /*RTPS:*/ is EXCLUDED from a calculation,
the interpreter will replace anything identified with {} as a
run time prompt. If like me, I had never used a variable with
the same name as a valid RTP, you would simply get an error
and likely not understand why you can’t reference the
variable.

If by chance you actually used a variable with the same name
as an existing RTP, you might have figured this out on your
own because you would be prompted for the RTP. Notice that no
header was added to include RTPs in this calculation (void of
any /*RTPS:*/) but still get a prompt.

You would also notice that the RTP is identified in the
Variables tab!

http://in2hyperion.com/wp-content/uploads/2019/04/RTP-Interpretation-Mode-in-Groovy-01.png
http://in2hyperion.com/wp-content/uploads/2019/04/RTP-Interpretation-Mode-in-Groovy-02.png

Now that you know this, forget that you do and don’t every use
RTPs without the /*RTPS:*/. This was something that was missed
in initial releases and will be deprecated. So, if you don’t
add your RTPs in a /*RTPS:*/ and use the RTPs, this will not
work in the future.

Example: Interpretation With RTPs
When /*RTPS:*/ is used anywhere in the calculation, the
variables in a conventional Groovy way. In this example,
sScenario is actually referencing the Groovy variable.

The same script with the RTPS inclusion header now works as
expected! sScenario is no longer interpreted as an RTP. If

http://in2hyperion.com/wp-content/uploads/2019/04/RTP-Interpretation-Mode-in-Groovy-03.png
http://in2hyperion.com/wp-content/uploads/2019/04/RTP-Interpretation-Mode-in-Groovy-04.png

the variable was named the same as a valid RTP, it would also
be handled as expected. Or, it is handled as I would expect
it not knowing {} meant RTP without the RTPS header.
rtp_Period is a valid run time prompt. Now that /*:RTPS*/ is
added to the script, the same line of code is looking for a
Groovy variable, not a RTP. Because the RTP is not defined,
the compiler returns an error.

What I Learned Today
Talking to the dev group today was awesome because I learned a
number of things.

There are two interpretation modes laid out above.1.
Calculations can have /*RTPS:*/ with no variables. I2.
never really thought about doing this. Now that I
understand the multiple modes, I am going to add this to
every Groovy calculation to avoid any issues like this.
/*RTPS:*/ can be anywhere in the calculation. I don’t3.
know why it would benefit somebody to have it at the
end, but it would work the same way as if it was the
first line. The reason it does this is because the
modules will add RTPs for certain situation and not
others. For this to be possible, the need to add
multiple RTPS comments with the appropriate RTPs through
the calculation was required.
/*RTPS:*/ can exist on multiple lines. If you wanted to4.
have each variable referenced on different lines,
/*RTPS:*/ can be repeated as many times as needed.

There are a couple wins for me now that I know this.

http://in2hyperion.com/wp-content/uploads/2019/04/RTP-Interpretation-Mode-in-Groovy-05.png

I use common code and functions in scripts that I embed1.
in groovy calculations to eliminate repetitive
functionality. If these functions require an RTP (even a
hidden one with an override that is a subvar), it can be
referenced inside the script rather than putting them in
the rules that reference the script.
The rule using the script can also have its own RTPs2.
that are not needed for the common code. So, I can have
common RTPs in the script and also have RTPs needed for
each specific rule in that rule and not have any
conflicts.

Does This Seem Irrelevant?
If you are asking yourself why this would ever come up and why
any variable would be referenced inside squiggly brackets,
this might help. The example above is simple and the println
could have been written without the quotes and squiggly
brackets.

println sScenario

You are correct, this would have worked. But, let’s say you
need the current month and year together. Yes, there are
other ways to accomplish this, but it emphasizes the need.
Let’s say I need the current month concatenated with the
current year formatted as FYyy.

def Year = (new Date()).format('yy') // produces 19
def Month = (new Date()).format(‘MMM’) // produces Apr
println "${Month}FY${Year}" // produces AprFY19

A second example would be referencing variables in a dynamic
FIX statement

if (uniquePeriodNames.size() == 0){
 println("No cells were edited")
}
else{
 operation.grid.dataCellIterator({DataCell cell ->

cell.edited}).each{
 lstProduct.add(it.getMemberName("Product"))
 lstPeriod.add(it.getMemberName("Period"))
 lstYears.add(it.getMemberName("Years"))
 }

 List povmbrs = operation.grid.pov

 StringBuilder strEssCalc = StringBuilder.newInstance()
 strEssCalc <<"""
 FIX("${lstPeriod.unique().join('","')}",
 "${lstYears.unique().join('","')}",
 "${lstProducts.unique().join('","')}",
 "${povmbrs*.essbaseMbrName.join('","')}")

 "Revenue" = "REV_BASE_PRICE" * "REV_SALES_QUANTITY";
 ENDFIX
 ENDFIX
 """
}

Another example would be concatenating member names and
country codes from an attribute dim. Suppose you want to
concatenate an _USD to a country code to reference an FX rate.

$CountryCode_USD tries to reference a variable named
CountryCode_USD. Using the squiggly brackets will enable this
to happen without confusion. ${CountryCode}_USD would
concatenate the value of CountryCode with _USD.

You can use additions and do $CountryCode + “_USD”, but it is
terribly inefficient. Once is not an issue but if it is used
inside of loops, it can cause performance issues.

Last Call
I don’t think it is fair to call this a bug. I do think there
is a lack of clarity. The dev group is actually looking at
addressing this in a future release. Again, my worlds, but
changing this to always referencing things inside of brackets

as a Groovy variable would make it a bit less confusing.
Basically, nothing inside of {} would be interpreted as an RTP
unless it is defined in the header definition. So, something
in brackets that is defined as an RTP would be an RTP.
Anything else would be assumed a variable.

