
Adventures in Groovy – Part
42: Using Scenario Start and
End Periods Through Metadata
Queries Provides Awesome
Functionality
Identifying the months to calculate plan and forecast has
always been a delicate balance between performance and
maintenance. Having a calculation for each required
duplication of forms or calculating more than what was
required. Calculations required more complicated if logic
than what it should have or (I hate when I see this) a
calculation that just does both forecast and plan regardless
of what needs calculated.

Groovy has opened up a lot of options. We can identify if
plan or forecast is in the form and dynamically build the
Essbase calculation, which is what I have started doing.
This, combined with only calculating on the edited cells, gets
you part of the way there. It doesn’t help with global
calculations or calculations when a single month will impact
all months, like when there are balance walk forwards.

Groovy provides us the ability to get member properties, which
I have discussed before. The Scenario dimension has unique
properties, like the start month, start year, end month, and
end year, which is what creates the security on the periods
and years for each scenario. Once these are identified, the
possibilities are endless. They can be used to create
gridbuilders, they can be used to dynamically fix on the
correct periods in Essbase calculations, or they can be used
to do other date specific things.

https://in2epbcs.com/2019/06/18/adventures-in-groovy-part-42-using-scenario-start-and-end-periods-through-metadata-queries-provides-awesome-functionality/
https://in2epbcs.com/2019/06/18/adventures-in-groovy-part-42-using-scenario-start-and-end-periods-through-metadata-queries-provides-awesome-functionality/
https://in2epbcs.com/2019/06/18/adventures-in-groovy-part-42-using-scenario-start-and-end-periods-through-metadata-queries-provides-awesome-functionality/
https://in2epbcs.com/2019/06/18/adventures-in-groovy-part-42-using-scenario-start-and-end-periods-through-metadata-queries-provides-awesome-functionality/
https://in2epbcs.com/2019/06/18/adventures-in-groovy-part-42-using-scenario-start-and-end-periods-through-metadata-queries-provides-awesome-functionality/

Groovy Calculation and API
At this point, you are probably very well aware of the
operation class, which has an application sub class. The
application subclass has many functions within it that are
useful. One, is the ability to create a dimension object.
From there, a member object can be created. The following is
a very simple example to hold a scenario member in a member
object that can be used in many ways.

Member mbrScenario =
operation.application.getDimension('Scenario').getMember('Plan
')

If the scenario is a run time prompt, it would look like
this. Assume the RTP is named rtpScenario.

Member mbrScenario = rtps.rtpScenario.getMember()

When the member object is initiated, all the properties of the
specific member are available. You may want to
review Adventures In Groovy – Part 11: Accessing Metadata
Properties before continuing. The same concept is used here,
but the properties returned are slightly different. The four
we want to access are

Start Period
End Period
Start Year
End Year

These can be stored in variables or used within calculations
or other logic. There may be a need to convert the month
member to a long month or a number. The year may also be
converted to remove the FY and prepend 20 so it can be used in
date manipulation. println mbrScenario.toMap() produces the
following, so the full list of properties is a little
different than what was produced in Part 11.

Log messages :

http://in2hyperion.com/2018/03/05/adventures-in-groovy-part-11-accessing-metadata-properties/
http://in2hyperion.com/2018/03/05/adventures-in-groovy-part-11-accessing-metadata-properties/

{Parent=Scenario, Two Pass Calculation=false, Process
Management Enabled=true, Old Name=Plan, Formula=<none>, End
Year=FY20, UDA=, Aggregation (GTech)=+, Solve Order (GTech)=0,
Essbase Name=Plan, UUID=91f18d30-fc37-4e0b-bc9a-99668194e793,
Member=Plan, Data Storage=never share, Hierarchy Type=none,
Allow Upper Level Entity Input=false, End Period=Dec, Start
Period=Jul, Aggregation (ProdRev)=+, Include BegBal=true, Data
Storage (GTech)=never share, Formula Description=<none>, Data
Id=2573227211374885, Data Storage (ProdRev)=never share, Start
Year=FY18, Data Type=unspecified, Formula (GTech)=<none>, Old
Unique Name=<none>, Formula (ProdRev)=<none>}

Since this is a Groovy map, a type of Groovy collection, any
of the elements can be accessed by referencing the element
key.

println mbrScenario.toMap()["Start Year"].toString()

Multi Year Example
Since many applications will span over multiple years, there
is some additional logic that has to be built to loop through
the months. If the user is prompted for a start period/year
and end period/year, you may need to validate that the date
range is within the start/stop periods on the scenario, which
also is easier to evaluate if these are converted to dates.

[membership level=”0″]

In2Hyperion has premium content that is only available to
those who make a small annual donation.

 Already have an account
with

in2Hyperion?
Login

 Want to purchase a
subscription to

the premium content?
Purchase Today

https://in2epbcs.com/wp-login.php
http://in2hyperion.com/membership/levels/

[/membership]
[membership]

Building The Date Range
Creating a map with the year and the list of months is a great
way to store the date range. It can be used to build lists
for gridbuilders that read data (parameters are multiple
rows/columns by year with periods as a list object), creating
Essbase calculations by year, and headers for grids that are
submitting data (which are string arrays).

Expanding on what was previously discussed, this will convert
the year to a valid year by removing FY and create a date
object that stores the start and end dates in variables.
Notice the start date uses a day of 1 and the end date uses a
day of 2. This is important later on.

Member mbrScenario =
operation.application.getDimension('Scenario').getMember('Plan
')
Date scenarioStart = Date.parse("yyyy-MMM-dd",
"20${mbrScenario.toMap()["Start
Year"].toString().substring(2)}-${mbrScenario.toMap()["Start
Period"].toString()}-01")
Date scenarioEnd = Date.parse("yyyy-MMM-dd",
"20${mbrScenario.toMap()["End Year"].toString().substring(2)}-
${mbrScenario.toMap()["End Period"].toString()}-02")

Now that we have two dates, the next step is to create the map
to hold the results. This map will look like similar to this
for a date range when Jul,19 through Dec, 20 is selected.

['FY19',['Jul','Aug','Sep','Oct','Nov','Dec']
, ['FY20',['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Se
p','Oct','Nov','Dec']

This is created by looping through the two dates by month.
This example uses a while loop and will iterate through each
month WHILE the iteration date (current) is before the end

date. If the scenarioStart and scenarioEnd dates had the say
day, this would exclude the last month because they would be
the same. This also uses the calendar class to increase the
date by month, which isn’t available in the date class.

// Create the variables needed
// PeriodRangeMap holds the years/months
// calendar and current are used in the iteration process
Map<String, List<String>> periodRangeMap = [:]
Calendar calendar = Calendar.getInstance()
Date current = scenarioStart

while (current.before(scenarioEnd)) {
 // Set the calendar variable to the date of the current
variable
 calendar.setTime(current)
 // If this is a new month, create a null map element to hold
the new year and months
 if(periodRangeMap["FY${current.format("YY")}".toString()] ==
null){
 periodRangeMap["FY${current.format("YY")}".toString()] =
[]
 }
 // Append the month to the appropriate year
 periodRangeMap["FY${current.format("YY")}".toString()] <<
current.format("MMM").toString()

 // Increase the calendar variable by one month
 calendar.add(Calendar.MONTH, 1);
 // set the current variable to the next month's date
 current = calendar.getTime();
}

If we print the periodRangeMap to the job console using a
println, assuming the start month is Jul of 18 and the end
month is Dec of 20, this will be displayed with the exception
that line returns are added to make it readable.

Log messages :
{
FY18=[Jul, Aug, Sep, Oct, Nov, Dec],

FY19=[Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec],
FY20=[Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec]
}

The periodRangeMap can then be used to loop through and create
the lists and maps used in gridbuilders and datamaps.

[/membership]

Last Call
The ability to directly access the start and stop period/year
really gives partners a new thought process to implementation
options where these periods are critical. It is very easy to
access, very easy to implement, and extremely useful. If you
have an idea of how to use these dates, share them with the
community so we can all benefit. Hope to see an idea soon!

