
Adventures in Groovy – Part
43: Sending Proactive Emails
In A Calculation
If you haven’t heard, we now have the ability to execute REST
API within a calculation script. Not only does that mean we
can interact with other environments and do things in
calculations we couldn’t do before, we also have the ability
to interact with any provider that has REST. You could pull
current prices for products from Amazon. You could see how
many open box items there are at area Best Buy stores. You
could pull in currency rates. That doesn’t even touch on the
things like DM processes, metadata updates, and application
refreshes. You can even send emails!

First, what is REST API?
A RESTful API is an application program interface (API) that
uses HTTP requests to GET, PUT, POST and DELETE data. A
RESTful API — also referred to as a RESTful web service — is
based on representational state transfer (REST) technology, an
architectural style and approach to communications often used
in web services development.

What this means is you can interact with services through web
URLs. When you send an email or purchase a product, you are
using HTML Post and Get requests.

How does it work?
REST is basically a way to post (do something) and get(receive
something) through website URL calls. There is more to it
than that, but that is the basic concept. There are all kinds
of services, free and paid, that provide services through REST
API.

https://in2epbcs.com/2019/07/26/adventures-in-groovy-part-43-sending-proactive-emails-in-a-calculation/
https://in2epbcs.com/2019/07/26/adventures-in-groovy-part-43-sending-proactive-emails-in-a-calculation/
https://in2epbcs.com/2019/07/26/adventures-in-groovy-part-43-sending-proactive-emails-in-a-calculation/

Since I am all about automation and communication, one thing I
thought would be great is if a user runs a calculation and it
fails, to proactively notify an admin. Prior to this month,
you would have to write something outside of the UI for
Planning to do this. This would be reactive. Wouldn’t it be
better to get an email or text immediately so you can act
quickly and diagnose the problem? Heck yeah it would.

The REST API Provider
There are a number of providers that give you the ability to
send emails via REST API. A few are free for a limited number
of emails per day/month. Mailjet is one of them. I went out
and signed up for a free account. It allows you to send up to
6k emails a month, with a maximum of 200 per day. That is
cool for my purposes of demoing functionality.

There are a few things you need. First is an encrypted key
and private key. That you will get when you create our
account. Next, the documentation lays out what needs included
in a post (do something) to send an email.

To send an email through mailjet, you post to a url of
https://api.mailjet.com/v3/send and pass a body that has the
typical information to send an email, like from, to, and
subject. The body is formatted as a json object. Json is not
super complicated, as it is basically the same as a Groovy
map, or an xml format. To focus on the API, I will explain
json at a later time.

Send An Email
The first thing that needs built is a connection to the REST
API provider. You can create a connection to be reused in
Planning (epbcs), but for this example, I am just going to
keep it simple and use a connection object with the
appropriate parameters. To keep my account private, I remove
my keys and replaced them with PublicKey and PrivateKey. Just

remember these both need replaced with the actual keys. The
status should return 200 if the request is successful.

Connection connection =
connection("https://api.mailjet.com","PuclicKey","PrivateKey")
println connection.get().asString().status

Next, I am going to walk through the body that needs passed.
Again, this is basic info that is not surprising. Each
element has a property and value. To avoid any more spam in
my email account, I replaced the from and to email with
invalid emails. These should be changes to include valid from
and to emails.

def bodyMap = new JSONObject()
bodyMap.put("FromEmail","xxx@in2hyperion.com")
bodyMap.put("FromName","Kyle Goodfriend")
bodyMap.put("Subject","My first email from a Groovy
Calculation!")
bodyMap.put("Text-part","This is an email from a calculation")
bodyMap.put("Html-part","<h3>Dear Admin,</H3>
This is an
email from a calculation")
bodyMap.put("To","xxx@in2hyperion.com")

Next is the actual request to post (or do something). The
path to send emails in the URL is
https://api.mailjet.com/v3/send. The only thing we need to
add to the post here is the path since the URL is in our
connection. The post requires two parameters. First, the
request requires one header identifying the content as json.
The second parameter is the body that includes the email
information, which we have in the bodyMap, which we simply
convert to a string.

HttpResponse response = connection.post("/v3/send")
.header("content-type","application/json")
.body(bodyMap.toString()).asString()
println response.status
println response.body
println response.statusText

https://api.mailjet.com/v3/send

This all said, the result is an email to your inbox and a log
in the job console that looks like this.

Last Call
Well boys and girls, that is all she wrote. That is it. If
your calc throws an error, use try/catch/finally and send the
appropriate people an email. If the calc is a long running
calc, user operation.user to send the person that executed it
an email when it finishes. The possibilities are endless but
you now have a mechanism to have proactive communication, not
reactive and time-consuming effort.

One note about mailjet. I have no affiliation to this
service. I have not used it other than to demonstrate this
functionality. A FREE account does allow you to send 6k
emails a month with 200 at most every day. If you want to use
this in a production situation, you likely will need to pay
for basic account, which is less than 9 bucks a month.

http://in2hyperion.com/wp-content/uploads/2019/07/SendEmailGroovyCalculation.png

