
Adventures in Groovy – Part
45: Locking Cells On Load
Often times, there is a need to lock cells from a user outside
of the traditional dimensional security methods. Maybe you
don’t want to add dimensional security to accounts so your
data push allows users to push data to another cube. Or,
maybe there is more complicated logic to identify who can and
who can’t edit a cell. The logic to do with is very simple.

Locking Cells
If you have read many of my articles, you likely have read
about how to iterate though cells with the data grid
iterator. If you haven’t, starting with Part 3 would be a
good start. The grid iterator allows the script to loop
through all cells, edited cells, or a filtered list of cells.
This is traditionally used to execute logic after a user edits
a form, but it can be used to lock cells when the form is
loaded. Whether it is simply specific accounts, products, or
a more complicated filter like products that have or don’t
have a specific attribute, it quite easy to do.

Following are two ways to lock the cells. The first is more
dynamic. This could do all kinds of things, like lock the
cell if it was above a specific value, or if it had a specific
attribute, or even something silly, like if it the user’s name
was Kyle!

// identify the rows to be locked in a list collection
List<String> lockCells = ['Net Income']
// lock the cells
operation.grid.dataCellIterator().each {
 // Lock the cells if the measure member of the cell is in
the lockCells list
 if(lockCells.contains(it.getMemberName("Measures"))){
 it.setForceReadOnly(true)

https://in2epbcs.com/2019/10/11/adventures-in-groovy-part-45-locking-cells-on-load/
https://in2epbcs.com/2019/10/11/adventures-in-groovy-part-45-locking-cells-on-load/
http://in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/

 }
}

The next example would do the same thing as above, but would
filter the cells the iterator loops on and lock all the cells
that meet the filter applied.

// identify the rows to be locked in a list collection
List<String> lockCells = ['Net Income']
// lock the cells
operation.grid.dataCellIterator(lockCells.join(',')).each {
 it.setForceReadOnly(true)
}

Add To The Form
Now that the rule is built, the only thing left is to add this
to the form in which it should run. The key is to add this
rule and check the Run After Load checkbox. This will allow
the form to load (or render), and then run the rule, which in
this case, will change predefined cell properties so that it
is not editable.

That’s A Wrap
This is not the longest post I have ever made, but it doesn’t
mean it is less useful. Locking cells based on criteria,
criterial we never had access to before, is quite
interesting. When security is set to lock a cell from a user
through dimensional security, it also means the users can’t
use data pushes to move that calculated data to other cubes,
which is an issue. Think about adding an attribute or UDA to
those accounts and then building a common script that runs on
all forms that locks the cells with that attribute or UDA. It
wouldn’t be any more difficult to build, and it can be
automated through metadata builds. Hmmm, wouldn’t that be
nice!

