
Adventures in Groovy – Part
46: Start Making Rules More
Reusable, Part 1
One thing that I have spent a lot of time on is making
calculations independent of forms so that they can be used on
any form. For example, rather than hard coding a script to
look at a form with one column header and one row header, I am
now building things to be dynamic so that the POV, the rows,
and columns all are read dynamically and identifying the
edited cells is independent of the source it is looking at.
This will be a multi-post article because there is a lot to
cover.

Think Different
I have not talked about some of the, what might seem like,
less functional classes and methods in the API. Most of my
examples don’t go into their use. The reason is solely trying
to break concepts apart and try to not overload people with
everything at once. What if I told you you could eliminate
most of your substitution variables? What if I said you only
need one data map? What if I told you that you could use rule
properties like never before? Spoiler alert, you can!

Building The Foundation
The first concept I want to share is a simple one, but it is
the start of making your scripts dynamic. When working with
grid builders, a reference has to be made to the plan type.
This is a very simple thing but has to be changed for
different plan types. You might first think to put this in a
script and embed the script, but there is an easier way that
makes it completely independent of the plan type or
application.

https://in2epbcs.com/2019/10/16/adventures-in-groovy-part-46-start-making-rules-more-reusable-part-1/
https://in2epbcs.com/2019/10/16/adventures-in-groovy-part-46-start-making-rules-more-reusable-part-1/
https://in2epbcs.com/2019/10/16/adventures-in-groovy-part-46-start-making-rules-more-reusable-part-1/

Everything I have shown you with grid builders starts with
this. This means that every rule has to have a hard-coded
plan type in it.

Cube cube = operation.application.getCube("plantypename")

Well, this isn’t the case. It can be done without hard coding
the play type name. The cube variable can be set by getting
the cube that the rule is created in so the rule will work on
any plan type in any application.

Cube cube = rule.getCube()

I can take that one step further and eliminate the cube
variable all together.

DataGridBuilder builderSubmit =
rule.getCube().dataGridBuilder("MM/DD/YYYY")
//or
DataGridBuilder builderSubmit =
rule.cube.dataGridBuilder("MM/DD/YYYY")

Grid builders aren’t the only class that uses this. If you
are doing anything with metadata, this will also benefit those
scripts.

Dimension productDim =
operation.application.getDimension("Period", cube)
// can be changed to
Dimension productDim =
operation.application.getDimension("Period", rule.cube)

That’s A Wrap
We have access to all kinds of things that we can make use of
now through these classes. The application class exposes the
currency mode and the default currency. We have access to the
smart lists and can access those. Could we use those in
calculations? Maybe it is used as a map, where label and
description is an account conversion between plan types? We
can get the dimensions, so a calculation could see if a

dimension exists. Maybe we can dynamically create fix
statements based on the dimensions in the cube (aggregate
everything that is sparse). User variables can be set, so
maybe if a calculation runs and the user variables aren’t set,
we ask the user to set it with an RTP, then continue the
calculation?

The rule class has methods to get the description, the name,
and the rule properties. I can’t say I have done it, but
maybe we used the description as a variable? Maybe we have
the name in a convention that specific characters mean
something and are brought into the rule, like a the scenario
name?

Some of these are just thoughts, and some of them are things
that we could implement and use. My point is that there are
all kinds of things we have access to dynamically that we
didn’t before. The apps I am building don’t have variables
for the open periods anymore because I can get them
dynamically in the calculation based on the scenario being
calculated. No more start and end month. No more current
month. And, if they are needed for reports or forms, have the
calculation set them if they are wrong.

So, what are you thinking? Do you have something you have
done that you couldn’t do before Groovy? Share it by
commenting.

