
Adventures in Groovy – Part
47: Real World Wins, Part 1
A specialty chemical products company created an ASO reporting
cube in ePBCS. This application housed detailed data that
rolled up to a GL account. The problem was the source didn’t
always tie to the GL due to restatements, GL entries, and
manual corrections. Since they wanted the data to match to
the book of record, but still have the level of reporting at
the detailed level, they wanted to load data from both
systems, calculate the variance, and store that variance so
users would see the difference between the two sources.

There were a number of challenges. Procedural calculations
were “too complex” and could not calculate at all the levels.
They didn’t want to engineer a new solution that included a
BSO calculation where the data was replicated and calculated.
So, Groovy was selected to calculate the variance.

Dimension Explanation
To simplify the explanation, this following Smart View
retrieve will help tell the story.

https://in2epbcs.com/2019/10/18/adventures-in-groovy-part-47-real-world-wins-part-1/
https://in2epbcs.com/2019/10/18/adventures-in-groovy-part-47-real-world-wins-part-1/

Organization dimension includes sub organizations from the
ERP, as well as the official organization in HFM. If Ohio was
an organization in HFM, the hierarchy would look similar to
this.

Ohio_Total
Ohio
Cincinnati
Columbus
Cleveland

I would have preferred to use a source dimension for this, but
the application didn’t include one. So, we used version, and
it look like this.

Total Working
Working (where the actuals were loaded) – named
working1 in the script below
Working Adjustment (where the adjustment to get
back to the book of record was stored) – named

http://www.in2hyperion.com/wp-content/uploads/2018/11/Success-Story-Groovy-Smart-View-Example.jpg

Working1_LStat_Adj in the script below
System Versions (hidden from users)

HFM Stat (where HFM was loaded) – named
HFMLocalStat in the script below

Groovy Calculation Overview
The calculation prompted the user for a start and end month,
and the year. The follow was done at the bottom of every other
dimension in the application.

The first piece of the calculation queried the Org1.
hierarchy and found all the level 1 members that ended
in _Total (Ohio_Total in the example above). These were
stored in an array to be used later.
The second step was to retrieve the data from HFM2.
(HFMLocalStat) and the data loaded from the ERP
(Working1) at level 1.
The third step was to calculate the variance between3.
x_Total member for the ERP and HFM data and store it at
the HFM child member in Working1_LStat_Adj.
The last step was to submit the results4.

The application didn’t have a source dimension, which is
normally where I would account for this, so we added a few
additional versions. The first was a statistical version that
was only used to house the data imported. Users didn’t have
access to this version. The GL data was loaded to a
statistical version. The working version was compared to the
statistical version, and the difference was stored in working
adjustments. The two of these combined was used to report
from

Groovy Calculation Deep Dive
The calculation would skip the months that had no data. For
12 months, the calculation finished in less than 5 minutes.
The calculation was designed, built, system tested, and went

through user validation in a few days. The total development
time was less than a day. The administrators could use the
existing architecture with no changes required (outside of
creating a new member in the xxx dimension)

[membership level=”0″]

In2Hyperion has premium content that is only available to
those who make a small annual donation.

Already have an account
with

in2Hyperion?
Login

Want to purchase a
subscription to

the premium content?
Purchase Today

[/membership]
[membership]

/*RTPS: {rtpMonth} {rtpYear} */
def rtpMonth = rtps.rtpMonth.getEnteredValue()
def rtpYear = rtps.rtpYear.getEssbaseValue().replaceAll('"',
'')

def lastMonth = Calendar.instance.with {
time = new Date().parse("MMM", rtps.rtpMonth.getEnteredValue()
)
it[MONTH]
}

// Setup connections
Cube cube = operation.application.getCube("Operations")

// Identify the orgs that are taken into account and need
adjusted
// members with a parent equal to the child with a _Total
suffix
Dimension orgDim = operation.application.getDimension("Org",
cube)

https://in2epbcs.com/wp-login.php
http://in2hyperion.com/membership/levels/

def keyProp = "Parent"
def orgParentChild = [:]
def Orgs = orgDim.getEvaluatedMembers("ILvl0Descendants(All
Org)", cube) as String[]
Orgs.each{
 Member orgMbr = orgDim.getMember(it)
 def memberProps = orgMbr.toMap()
 if(memberProps[keyProp] == it.toString() + "_Total"){
 orgParentChild[it] = it.toString() + "_Total"
 }
}
def orgParents = orgParentChild.collect{it.value}

// Loop through months selected
(0..lastMonth).each{ iMonth ->

 def runMonth = new
java.text.DateFormatSymbols().months[iMonth]
 def runDay = "${iMonth+1}-1"
 println "Executing for ${runMonth}"

 // retrieve the ERP and HFM data points
 DataGridDefinitionBuilder EntityBuilder =

cube.dataGridDefinitionBuilder()
EntityBuilder.addPov(['Market','Project','Scenario','View','Ye
ars','Currency','Product','BT_Customer','Customer'],
 [['Total_Market'],['Total
Project'],['Actual'],['PTD'],[rtpYear],['USD'],['Total
Product'],['BT_Customer'],['TotalCustomer']])
 EntityBuilder.addColumn(['Period','Version'], [[runMonth] ,
['Working1','HFMLocalStat','Working1_LStat_Adj']])
 EntityBuilder.addRow(['Entity','Org','Account'], [

['ILvl0Descendants("Total
Entity")'],orgParents,['ILvl0Descendants("NetIncome")']])
 EntityBuilder.setSuppressMissingBlocks(true)
 DataGridDefinition EntityDefinition = EntityBuilder.build()

 // Calculate and submit the adjustments
 // Build the grid based on the rows in the previous grid
 cube.loadGrid(EntityDefinition, false).withCloseable {
entityGrid ->
 if(entityGrid.size() > 0){

 DataGridBuilder builderSubmit =
cube.dataGridBuilder("MM/DD/YYYY")
 builderSubmit.addPov('No Market','No

Project','Actual','PTD',rtpYear,'USD','No Product','BT_No
Customer','No Customer','Working1_LStat_Adj')
 builderSubmit.addColumn(runDay)
 entityGrid.dataCellIterator("Working1").each{ it ->
 builderSubmit.addRow([it.getMemberName("Entity"),
it.getMemberName("Org").toString().reverse().drop(6).reverse()
, it.getMemberName("Account")],
[it.crossDimCell("HFMLocalStat").data - it.data])//
it.crossDimCell("HFMLocalStat").data
 }
 DataGridBuilder.Status status = new

DataGridBuilder.Status()
 DataGrid gridx = builderSubmit.build(status)
 cube.saveGrid(gridx)
 println(" Total number of cells accepted: " +
status.numAcceptedCells)
 if(status.cellsRejected.size() != 0){
 println(" Total number of cells rejected: " +
status.numRejectedCells)
 println(" First 100 rejected cells: " +
status.cellsRejected)
 }
 gridx.close()
 }
 else{
 println "No data available."
 }
 }
}
println "Finished"
return

[/membership]

That’s A Wrap
This is a great example of how we can inject new and creative
ways to solve problems with speed in processing, speed in

developing, and introducing no additional maintenance. Look
for more of these real world wins in the future.

