
Adventures in Groovy – Part
51: Dynamically Changing
Storage Properties When Using
Hybrid
With hybrid being used more and more there is a need to manage
the storage methods of different levels of sparse dimensions.
Whether it is a staggered hierarchy or not, getting the
storage method from the source can sometimes be challenging.
More often times than not, you may want to own it on the
Planning side so you can change it at will and not have to go
through the typical IT change order process that may take
weeks, or even months, to go through the full development
cycle.

Managing this manually would not be fun, especially if the
hierarchy is loaded more often than monthly. Yes, you could
use the Smart View admin option, but it is manual and let’s
face it, you have a ton going on and you will make mistakes.

In Comes Groovy
With Groovy, a calculation can be written to update metadata.
I have talked about this in several other posts, but I am
going to walk through a couple specific examples that are for
specific situations. I think this will spark some interest of
taking this further for situation similar, or completely
different.

https://in2epbcs.com/2020/07/06/adventures-in-groovy-part-51-dynamically-changing-storage-properties-when-using-hybrid/
https://in2epbcs.com/2020/07/06/adventures-in-groovy-part-51-dynamically-changing-storage-properties-when-using-hybrid/
https://in2epbcs.com/2020/07/06/adventures-in-groovy-part-51-dynamically-changing-storage-properties-when-using-hybrid/
https://in2epbcs.com/2020/07/06/adventures-in-groovy-part-51-dynamically-changing-storage-properties-when-using-hybrid/

Reusable Concepts
Before I jump into the situations and examples, there are a
couple techniques that will be reused in all the examples.
Rather than repeatedly explain them, let me first introduce
them.

First, this situation assumes that the storage methods are
different for the plan types. This might be more unique, but
it is easy to deal with. If this isn’t the case, the
properties in the example can be change to “Data Storage”

It is always a good idea to start every Groovy script off with
the RTPS tag. To understand more about why this is important,
read Part 49 This will be used in each example.

/*RTPS: */

Each example requires methods that have to have the dababase
passed to it. The easiest way to get the cube the rule runs
on is to use rule.cube. There are other ways to accomplish
it, but this is the shortest and most dynamic.

List<Member> products =
operation.application.getDimension("Product",rule.cube).getEva
luatedMembers("Descendants(Product)", rule.cube)

Each example gets the dimension and holds it in a variable.
The method requires a pointer to a cube, or cubes. Often it
is easier to pass the cubes in the application, rather than
one cube, to make sure all artifacts are available and not
hard coded. operation.application.cubes as Cube[] returns all
the plan types as an array of variables that are of type cube.

A note about the parameters that can be used. It is much
faster to use the same parameters that are used in planning,
like the options in a data map. You CAN use most of the
Essbase function. Oracle doesn’t recommend them. They are
slower, but if you are not iterating and running the request
numerous times, I haven’t noticed a difference. In this

http://www.in2hyperion.com/2019/12/22/adventures-in-groovy-part-49-unable-to-retrieve-variable-deployed-in-application/

example, it is executed once, so the performance degradation
is minimal.

Dimension objDim =
operation.application.getDimension('Product',operation.applica
tion.cubes as Cube[])

To get and set the properties of a member, the toMap method is
used. This will return all the properties of the member and I
wrote a summary of the use of this method in a prior post
found in this post – Part 11 – Accessing Metadata

Map<String,Object> memberProps = it.toMap()

Lastly, if you aren’t familiar with regular expressions, they
can be of great use. I have a module dedicated to this in
xxxxx. I struggled understanding regular expressions for
years. But I promise you, if you take 4 hours and focus on
learning them, it will click. To use it in Groovy, using the
matches method allows this. Briefly, here are some basic
concepts. A ^ means starts with. A $ means ends with. A dot
means any character, and following that with an asterisk means
many. So .* means one to many characters of any type

.matches("^.*Region$") || it.name.matches("^District.*$")

Setting All Parents To Dynamic
If you have a smaller hierarchy, one with maybe only a few
levels, it might be advantageous to just set all the parents
to dynamic. The following script iterates through all the
product members and sets every parent to dynamic.

/*RTPS: */
List products =
operation.application.getDimension("Product",rule.cube).getEva
luatedMembers("Descendants(Product)", rule.cube)
List<Member> lev0Products =
operation.application.getDimension("Product",rule.cube).getEva
luatedMembers("ILvl0Descendants(Product)", rule.cube)

http://in2hyperion.com/2018/03/05/adventures-in-groovy-part-11-accessing-metadata-properties/

Dimension objDim =
operation.application.getDimension('Product',operation.applica
tion.cubes as Cube[])
products.each{
try{
 Map<String,Object> memberProps = it.toMap()
 if(lev0Products.contains(it)){
 memberProps["Data Storage

(${rule.cube})".toString()] = 'never share'
 }
 else{
 memberProps["Data Storage

(${rule.cube})".toString()] = 'dynamic calc'
 }
 objDim.saveMember(memberProps)
}
catch(Exception e) {
 println("Exception: ${e}")
 println it.name
}
}

Use Patterns To Set Parent Storage
Property
In some situations, there are patterns to the levels of your
hierarchy. Maybe you have regional levels that are definable
and unique that can be used to set different levels to
dynamic. Assume the following naming convention for this
example

Total Products
West Region (everything ends in Region)

District 1 (everything starts with District)
…

…

/*RTPS: */
// Get every product in the hierarchy

List<Member> products =
operation.application.getDimension("Product",rule.cube).getEva
luatedMembers("IDescendants(Product)" , rule.cube)
// Assign the producdt dimension to a variable
Dimension objDim =
operation.application.getDimension('Product',operation.applica
tion.cubes as Cube[])
// Loop through each product
products.each{
 // if the product matches these expressions, change the
app setting to dynamic
 if(it.name.matches("^.*Region$") ||

it.name.matches("^District.*$") || it.name == 'Total
Products'){
 Map<String,Object> memberProps = it.toMap()
 memberProps["Data Storage (${rule.cube})".toString()]
= 'dynamic calc'
 objDim.saveMember(memberProps)
 }
 // otherwise change it to never share
 else{
 Map<String,Object> memberProps = it.toMap()
 memberProps["Data Storage (${rule.cube})".toString()]
= 'never share'
 objDim.saveMember(memberProps)
 }
}

More Complicated Possibilities
There are a bunch of other possible needs. Let’s say you have
a need to make everything above level 3 dynamic. First, if
the hierarchy is staggered, the same level can be a 1 and 5.
You would have to decide how to handle that. I would lean
toward if it was a level 1 and a 5, I would make it dynamic
because that might also mean your level 5 and 9 in that
portion of the hierarchy would be a pretty deep hierarchy to
make 9 levels dynamic. Every situation is different, and
performance would have to be evaluated, but the complexity of
identifying how to set the storage in these situations is what

I am trying to explain.

If you want to use patterns, you may also want to ensure that
the pattern isn’t replicated at a parent and level 0, so there
may be a need to check for both a pattern and the level of the
member.

Obviously, there are an infinite amount of possibilities and
each one could introduce complexity. Just understand that
almost anything can be defined by patterns and levels and can
be accomplished, but the level of complexity of your logic or
your regular expression may increase.

That’s A Wrap
The bottom line is that we now have the ability to do a lot of
things we relied on the source system to do. Or, maybe
external scripts were run using Perl, or VBScript, or
PowerShell. We can use metadata properties, dynamic levels,
any other repeatable pattern that might possibly come up. It
is fast and reliable, and completely in our control so we
don’t rely on others when it is broken or needs changed.

