
Use PowerShell to split large
files by month/year for data
loads into FDMEE on PBCS
If you are using PBCS, you may run into some challenges with
large files being passed through FDMEE. Whether performance
is an issue or you just want to parse a file my month/year,
this script might save you some time.

The Challenge
I recently had the need to break apart a file. The source
provided one large text file that included 2 years of data
that was needed to populate the history of an employee metrics
application. The current process loaded files by month and we
wanted to be able to piggy back off the existing scripts to
load and process data in FDMEE and the monthly Planning data
pushes to the ASO reporting cube. So, the need break the data
file into seperate files by month and year was required. The
file was delimited and formatted like the following.

Entity,Year,Scenario,Period,Account,Date,Employee,Pay
Code,JobNumber,Data
BU1005,FY15,Actual,Feb,Pay
Amount,02/02/2015,V1398950,P105,,108.10
BU1005,FY15,Actual,Feb,Pay
Amount,02/03/2015,V1398950,P105,,108.92

The goal was to have a file for every unique month and year
combination that included only the lines of the relevant time
periods. The header of the file also had to exist in each of
the smaller files. Since we were working on a Windows
machine, we used PowerShell to script the solution.

https://in2epbcs.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/
https://in2epbcs.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/
https://in2epbcs.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/

Powershell Script Directions
The script is pretty simple to use and understand. Update the
script as follows.

Create a new text file with a ps1 extension and paste1.
the following into that file.
Update the srcFile variable to point to the file to be2.
parsed.
Update the startYear to the first year in the file to be3.
extracted.
Update the currentYear variable to the last year in the4.
file to be extracted.
Update the ProcessName to a meaningful word or phrase5.
that will be used to create the file name.
Save the file and execute it like any other PowerShell6.
script.

This will produce 12 files for each year with the header line
and the data related to the month and year that represents the
year and month in the file name.

Disclaimer
I welcome feedback on improving performance and will give
credit to anybody that can improve on this. I am NOT an
expert in PowerShell and I am sure there are faster ways to
accomplish this. This created 12 files (1 year / 12 months)
from a file that includes 7.8 million records and completed in
24 minutes. So, this is pretty reasonable for one-off
requests, but might need attention if it was a repeatable
need.

This was developed using PowerShell 5 and some functions do
not work in earlier adoptions of the software.

Powershell Script
##
#########
Set the file to parse
#
Set the start year and end year
#
Change the counter if you want the files produced to start
at
something other than 1
##
#########

Write a status to the screen to monitor progress
write-host "Processing started at $($(Get-
Date).ToShortTimeString())"

Update to point to the source file
$srcFile = "C:\Oracle\GCA\Data\Files\2015 Time
Data\Time_DataPayAmount2015.csv"

Set to the first year you want to process
$startYear = 2015
Set to the last year you want to process
$currentYear = 2016

Used in the naming, is the starting number in name and
increments by 1
$counter = 1

Get the first line (the header line) of the file
$Header = Get-Content $srcFile -First 1

Set the process name used in the file name
$ProcessName = "Test Process"

Loop through each year in the range
ForEach ($Years in $startYear..$currentYear)
 {
 # Loop through each month of the year
 ForEach ($months in 1..12)

 {
 # Get the 3 month abbreviation of the month being
processed

 $ShortMonth = (Get-
Culture).DateTimeFormat.GetAbbreviatedMonthName($months)

 # Format year to FYxx (This is typically required on a
Planning application)
 $FormattedYear = "FY" +
 $Years.ToString().substring($Years.ToString().length - 2,
2)

 # Set the file name to a number starting with 1, the
Month, and the year
 # Example: 01_ProcessName_Jan_2015.txt
 $FileOut = "{0:00}" -f $counter++ + "_" + $ProcessName +
"_" +
 $ShortMonth + "_" + $Years + '.txt'

 # Write out the header to the newly created file file
 $Header | out-file -filepath $FileOut -Encoding utf8

 # Write out all the lines that match the month and year.
The pattern
 # includes a ".*" which is the equivalent of an AND
conjunction, so
 # the line has to include the processing year AND
processing month
 # for it to be included.

 select-string $srcFile -pattern
"${FormattedYear}.*($($ShortMonth))" |
 foreach {$_.Line} | out-file -filepath $FileOut -Encoding
utf8 -Append

 # Write a status to the screen - this is not required but
provides a level
 # of the current progress by communicating the Month/Year
completed and the
 # time it completed
 write-host $fileout "Completed at $($(Get-
Date).ToShortTimeString())"

 }
 }

Conclusion
Hopefully this will benefit the community. As I create more
scripts like this, I plan to share them.

