
Working With Planning Formula
Expressions
Most of us know that there is a button in the calc rule editor
that allows us the ability to select a smart list and the
smart list entry. It will add something [[smartlist
name.smartlist entry]]. If this is new to you, what it does
is replace reference the smart list and replaces it with the
numeric value that exists in Essbase. The beauty of this is
that it is dynamic, so if the smart list is changed in any
way, you don’t have to go into your rules and replace change
the index values for the smart list entries to match. Guess
what, there are more!

Well, don’t I feel like the F*@$& idiot, to pull a quote from
A Few Good Men.

What Is A Planning Formula Expression
As described above, it is an expression that allows you to get
valuable information dynamically about artifact properties in
a Planning application. The following formula expressions
currently exist.

SmartLists
Dimensions
Planning User Variables
Periods
Scenarios
Cross-References
Workforce Cube Year to Date
Get ID for String

https://in2epbcs.com/2020/07/10/working-with-planning-formula-expressions/
https://in2epbcs.com/2020/07/10/working-with-planning-formula-expressions/

SmartLists
I already discussed the Smart List, but here is an example if
this is new to you. The calculation manager syntax is
[[SLName.entryname]].

FIX (Mar, Actual, Working, FY15, P_000, "111")
 "Product Channel" = [[Channel.Retail]] ;
ENDFIX

Which would return something like this.

FIX (Mar, Actual, Working, FY15, P_000, "111")
 "Product Channel" = 2 ;
ENDFIX

Dimensions
The dimension expressions are not all that useful unless you
are building calculations that might go across applications
that have different names for the 6 required dimensions, plus
currency. Using the following dimension tags, the customized
name will be returned when they are added to the dimension
expression. The syntax used for this function is
[[Dimension("DIM_NAME_ENTITY")]].

DIM_NAME_PERIOD
DIM_NAME_YEAR
DIM_NAME_ACCOUNT
DIM_NAME_ENTITY
DIM_NAME_SCENARIO
DIM_NAME_VERSION
DIM_NAME_CURRENCY

An example would look like this. This runs a calc dim on
whatever your account dimension is.

CALC DIM([[Dimension("DIM_NAME_ENTITY")]]);

In this application, Entity is named Entity, so the above
script returns:

CALC DIM ("Entity");

If the entity dimension was named Cost Center, it would
return:

CALC DIM ("Cost Center");

Planning User Variables
Planning user variables return the user variable’s member.
This can be pretty useful if you have variables that are used
to do things like fix on their area of a hierarchy. These can
be gathered through run time prompts if they exist in the POV,
but that isn’t always the case. You might use them to show
the products, for example, that are under a user variable, in
the rows, in which case without Groovy, it can’t be passed in
RTPs. The calculation manager syntax is
[[PlanningFunctions.getUserVarValue("xyz")]].

An example where the user variable is used to run a
calculation might look like this.

FIX (Feb, Actual, Working, E_000,
@RELATIVE([[PlanningFunctions.getUserVarValue("Product
View")]],0))
 Revenue = Units * Cost;
ENDFIX

Period Functions
Period(periodName) returns the specified period. The options
for this function are and the calculation manager syntax is
[[Period("FIRST_QTR_PERIOD")]].

FIRST_QTR_PERIOD
SECOND_QTR_PERIOD
THIRD_QTR_PERIOD
FOURTH_QTR_PERIOD
FIRST_PERIOD
LAST_PERIOD

This example:

FIX (Mar, Actual, Working, P_000, "6100", FY15)
 "120" =[[Period("FIRST_QTR_PERIOD")]];
ENDFIX

would return a script like this

FIX (Mar, Actual, Working, P_000, "6100", FY15)
 "120" = "Mar";
ENDFIX

The NumberofPeriodsInYear returns the number of periods in the
year and NumberofYears returns the number of years in the
application. The calculation manager syntax for this is

[[NumberOfPeriodsInYear]]
[[NumberOfYears]]

The following example

FIX (Mar, Actual, Working, P_000, "6100", FY15)
 "120"=[[NumberOfPeriodsInYear]];
 "120"=[[NumberOfYears]];
ENDFIX

would produce this.

FIX (Mar, Actual, Working, P_000, "6100", FY15)
 "120"=12;
 "120"=9;
ENDFIX

Scenarios
This one is my favorite ones. I have been using Groovy to get
these not knowing they existed. These allow the reduction of
if statements and improved performance. We can get the open
periods. If this go across years, then my groovy solution
probably comes back into play. For ranges that include one
year, or even two could be handled, this offers great
functionality. The options available are

Start Year
End Year
Start Month
End Month

The calculation manager syntax is as follows.

[[getStartYear(“ScenarioName”)]]
[[getEndYear(“ScenarioName”)]]
[[getStartMonth(“ScenarioName”)]]
[[getEndMonth(“ScenarioName “)]]

A use case would look something like this. Assume{rtpScenario}
is a run-time prompt variable of type member with a default
value of “Actual”:

FIX({rtpScenario},
[[getStartYear({rtpScenario})]]:[[getEndYear({rtpScenario})]],

[[getStartMonth({rtpScenario})]]:[[getEndMonth({rtpScenario})]
])
 FIX (Working, P_000, "111")
 "5800" = 5500;
 ENDFIX
ENDFIX

This would build out the following calculation

FIX ("Actual", "FY10" : "FY18", "Jan" : "Dec")
 FIX (Working, P_000, "111")
 "5800" = 5500;
 ENDFIX
ENDFIX

If your open range consisted of two years, you could do
something like this

FIX({rtpScenario},[[getStartYear({rtpScenario})]],[[getStartMo
nth({rtpScenario})]]:”Dec”)
 FIX (Working, P_000, "111")
 "5800" = 5500;
 ENDFIX

ENDFIX
FIX({rtpScenario},[[getEndYear({rtpScenario})]],”Jan:[[getEndM
onth({rtpScenario})]]
 FIX (Working, P_000, "111")
 "5800" = 5500;
 ENDFIX
ENDFIX

Cross-References
This function comes in a few flavors but does something pretty
awesome. How it works might change your naming convention a
little, or make it more consistent anyway. What id does is
generate a cross dimensional reference to our default members,
like No Product. The syntax is CrossRef(accountName, prefix,
true) but the last two parameters are optional. If you use
CrossRef(“Revenue”), it would produce the following, assuming
your 6 required dimensions and a product dimension.

"BegBalance"->"No Scenario"->"No Version"->"No Entity"->"No
Product"->"Revneue";

I can change my prefix by adding the second parameter. I don’t
like having spaces in my member names, so I would do the above
with CrossRef(“Revenue”,”No_”) which would produce

"BegBalance"->"No_Scenario"->"No_Version"->"No_Entity"->"No_Pr
oduct"->"Revneue";

If I change my syntax to CrossRef(“Revenue”,”No_”,true) I have
a cross dim operator for all dimensions Except Period (uses
BegBalance), and Currency, but includes year

"BegBalance"->"No_Year"->"No_Scenario"->"No_Version"->"No_Enti
ty"->"No_Product"->"Revneue";

Used in a Fix Statement the following example

FIX (Aug, Actual, Working, FY15, P_000, "112")
 "111" = [[CrossRef("5800", "No_", true)]];
ENDFIX

would produce the following script.

FIX (Aug, Actual, Working, FY15, P_000, "112")
 "111" =

"BegBalance"->"No_Year"->"No_Scenario"->"No_Version"->"No_Enti
ty"->"No_Product"->"5800";
ENDFIX

Workforce Cube Year to Date
If you use workforce, you probably have noticed the members it
generates to get the month index for both the calendar and
fiscal period. These can be used with this function to build a
calendar to date value. The syntax is [[CYTD(memberName)]]. If
you have renamed “Cal TP-Index” and “Fiscal TPIndex,”, then
you have to specifically name the members in two additional
parameters and the syntax is [[CYTD(memberName,
calTpIndexName, fiscalTPIndexName)]]. This method is really
easy to use and looks like this.

Fix (NOV, Actual, Working, FY15, P_000, "112")
 "5800" = [[CYTD("6100")]];
ENDFIX

If the default names are changed, it would look a little
different.

Fix (Dec, Actual, Working, FY15, P_000, "112")
 "5800" = [[CYTD("6100", "Cal TP-Index", "Fiscal
TPIndex")]];
ENDFIX

Get ID for String
This doesn’t solve all the problems around Smart Lists and
text accounts, but it is a step in the right direction. If you
don’t know, both of these are held in the Planning repository.
Essbase ONLY stores numbers. Look at this as the index to the
value you see in Planning. The repository has the map from
index to value. In an Essbase calculation, you can’t set a

text account to a text value. Well, actually, you can. The
syntax for this function, which assigns a text value, is
[[PlanningFunctions.getIdForString("text")]]. This allows you
to set the value of a text account to a string.

In Planning, you have an account named “acct1 text” that is of
type text. You want to copy your values from FY16 Dec to FY17
Mar, and change the text account to “Not Budgeted,” it would
look like this.

FIX (Actual, Working, P_000, "210")
 DATACOPY FY16->Dec TO FY17->Mar;
 Mar(

 "acct1 text"->FY17 =
[[PlanningFunctions.getIdForString("Not Budgeted")]];
)
ENDFIX

That’s A Wrap
One last thing. If you use any of these in a member formula,
for some reason you have to remove a bracket on each side. So,
instead of two, you just need one. I will say I have not
tested all of these, but the ones I have tested/used do follow
this pattern. Hopefully Oracle keeps expanding these. Although
they aren’t as helpful as they were prior to Groovy, they are
simpler to use than implementing a Groovy solutions for some
of these needs. For you lifers, it is things like this that a
newb tells you. Don’t ever think you can’t learn from somebody
that “knows nothing.”

