
Adventures in Groovy – Part
30: Dynamically Identify
Actionable Months
Almost every ePBCS application will require the need to run
business logic and execute data movements on specific months
based on a scenario selected. Almost every Data Form will
require action to be taken dynamically based on the selection
of the Scenario. Assuming a fiscal year of Jan to Dec and
Actuals being final through Jun,

processes on Actuals will run on Jan through Jun
processes on Budget/Plan will run on Jan through Dec
processes on Forecast will run on Jul through Dec

Prior to Groovy, this was done in an Essbase calculation by
writing if statements based on the scenario selected in the
POV and checking if the month was part of a variable range.
It might have looked something like this.

IF((@ISMBR("Plan") AND @ISMBR(&v_BudYear) AND
@ISMBR(&v_BudMths)) OR
 (@ISMBR("Forecast") AND @ISMBR(&v_FcstYr1) AND
@ISMBR(&v_FcstMths1)))
 ...
ENDIF

Groovy provides a much more efficient way to accomplish this.
Although it may be different based on specific needs, the
example below will assume that Forecast and Actuals can be
identified based on a variable that is updated monthly
identifying the last month of Actuals.

Setting Up The Variables and Run Time

https://in2epbcs.com/2018/08/16/adventures-in-groovy-part-30-dynamically-identify-actionable-months/
https://in2epbcs.com/2018/08/16/adventures-in-groovy-part-30-dynamically-identify-actionable-months/
https://in2epbcs.com/2018/08/16/adventures-in-groovy-part-30-dynamically-identify-actionable-months/

Prompts
This application has a substitution variable named v_CurMonth
used to identify the current reporting month of Actuals, or
the last month Actuals are final. This will be used in the
Run Time Prompt as a default value in several places and this
is required.

A Run Time Prompt is also required. There is nothing unique
about the RTP for this use and the application may likely
already have one. This will be a member Type, be connected to
the Period dimension, and have a default value of the
substitution variable above. It would look similar to this.

Finally, a variable in the Groovy business rule must be
created. This variable will be set as an override value with
the default value equal to the substitution variable created
above. In a Groovy business rule, a variable is instantiated
by adding the following line at the top of the rule. It looks
like a comment, but it acts differently when it starts with
RTPS:.

/*RTPS: {RTP_Month}*/

After this is added, the Variables tab of the business rule
will show all the variable defined. Set the variable so that
it is hidden and is used as an override value.

http://www.in2hyperion.com/wp-content/uploads/2018/07/Groovy-Dynamic-Months-RTP.png
http://www.in2hyperion.com/wp-content/uploads/2018/07/Groovy-Dynamic-Months-Variable.png

The Code
At this point, all of the required variables are setup. The
first step is to define the months. This can be hard coded
since this is not something that will change frequently. If
this is added to a script and included in all the business
rules it is needed, changing it would be easy if the months
did change since it is in one place and shared throughout.

// Hard coded months
def months =
['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','
Nov','Dec']

Optionally, this can be set dynamically. Either option, in my
opinion, is acceptable. The result of the following would
produce the exact same value for months.

// Dynamically get the list of months based on the
application's fiscal year
Cube cube = operation.application.getCube("GP")
Dimension productDim =
operation.application.getDimension("Period", cube)
def months =
productDim.getEvaluatedMembers("ILvl0Descendants(YearTotal)",
cube)

The next piece of this rule is to get the month from the
variable. This will be the key to identify which months are
used in calculations that run on Actuals and Forecast.

// Get the month from the hidden RTP
def actMonth = rtps.RTP_Month.toString()

The last step is to get the appropriate months based on the
Scenario selected. If Actuals is selected, all the elements
in the months list from the first to the index of the month in
the RTP are selected. If Plan is selected, all the months are
included. This can be altered based on needs. Some companies
do mid year plans, for example, and may need to only execute
the logic on the last 6 months. If Forecast is selected, all

the elements in the months list AFTER the RTP value to the end
of the list are selected.

// Create dynamic list of months based on user selected
Scenario
def useMonths = []
if(operation.grid.pov.find{it.dimName
=='Scenario'}.essbaseMbrName.toString().toLowerCase().contains
('plan')){
 // This will create a list of all months - assuming the the
plan is for 12 months
 useMonths = months
 }
if(operation.grid.pov.find{it.dimName
=='Scenario'}.essbaseMbrName.toString().toLowerCase().contains
('forecast')){
 // This will create a list all months after the actMonth
variable - or the out months
 useMonths = months[months.findIndexOf{it == actMonth}+1..-1]
 }
else{
 // This will create a list of all actual months
 useMonths = months[0..months.findIndexOf{it == actMonth}]
 }

// Create delimited list for methods that don't require a List
object
def useMonthsString = """\"${useMonths.join('", "')}\""""

Using useMonths and useMonthsString
The hard part is over. Using the variable is the easy part.
It can be used anywhere the months needs to be change from all
months to the identified months.

In a DataMap/SmartPush

operation.grid.getSmartPush("GP_SmartPush").execute(["Period":
useMonthsString])

Same concept but overriding the entire POV (something more
realistic in a real world example)

// This creates a variable for the povMap that includes all
members in the existing POV
// This is used as a possible scenario but is not directly
related to the content of this post
def povMap = operation.grid.pov.each{povMbrs["pov$it.dimName"]
= "$it.essbaseMbrName"}
// Add the months to a map for the Period dimension
povMap['Period'] = useMonthsString
operation.grid.getSmartPush("GP_SmartPush").execute(povMap)

In a GridBuilder

builder.addColumn(['Period','Currency'], [
useMonths,['Local','USD']])

In an Essbase FIX statement

essCalc << """
FIX($useMonthsString)
"""

Finally
This could be added to a script and included in all the
Business Rules that require such a variable. It creates a
variable once that can be used in many classes. It improve
maintainability and reduces replicating the same logic for
each class. If you have any suggestions, or have something
you would like to share, please post a comment.

