
Efficiently Handling Creating
Blocks
You known what they say? Don’t believe everything you read on
the internet. Creating blocks with DATACOPY is only the second
slowest way you can do it. Do you want to know how to create a
calculation using a faster performing technique to create
blocks while calculating the members in those blocks?

Introduction
I see hundreds of examples of how to deal with block creation.
It almost always is an issue when I am asked to get involved
in projects that have performance issues. You will never hear
me say “best practice.” There are reasons we all do things
that go against what Oracle will say is a best practice. We
have larger block sizes to improve reporting performance and
we know it causes slower calcs. If the calc runs at night
nobody cares if it runs 10 minutes or 60 minutes. We go
against the grain on dimension order when data is sparse and
performance on calculations is improved by ignoring the
“ideal” order.

Block creation can be a bear if you don’t understand what
blocks are or don’t understand how they get created. There are
a bunch of ways to do it and there are many options that can
be used. I want to educate on what a block is and show how to
handle it the most efficient way because 9 out of 10 people
don’t know how to handle it efficiently. I don’t know why,
because it is easy to figure out if you think about it and
understand some basic concepts, and even easier to implement
it.

https://in2epbcs.com/2021/10/25/efficiently-handling-creating-blocks/
https://in2epbcs.com/2021/10/25/efficiently-handling-creating-blocks/

If you have a better way to do it share your techniques.
Hopefully I don’t say anything incorrectly and I shed some
light on block creation for the majority of the people reading
this.

What Is Block Creation
Essbase stores data in blocks. A block is the combination of
dense dimensions. There is a block for every stored
combination of sparse members. If you don’t know how blocks
work, I highly recommend you read Sparse, Dense, and Blocks
for Dummies. If a block doesn’t exist, it will only get
created if you tell Essbase to create it. I will get into how
to do this shortly.

When blocks don’t exist, a lot of calculations appear to work
intermittently. If you have this issue, it is likely due to
the fact that it works when blocks already exist and doesn’t
when they don’t exist. You can easily tell by loading a number
to one combination of the dense members and run the calc
again. Submitting a value will create the block if it doesn’t
exist. If it calc works after you submit some data, it is most
likely the fact that the block was not there and is now.

Block creation is something you will likely encounter on every
project. How do deal with it is what I want to tackle.

Using DATACOPY – What Most Teach
You
Most people create blocks by using DATACOPY. I just read a
post on LinkedIn that sparked my interest in writing this
because I find it terribly frustrating when people/companies
represent themselves as experts and teach people inefficient
ways to do things. I have most certainly done this in my life
in an effort to help people, but this topic is so basic and
polarizing for me because it is SO EASY to do it right. By

right, I mean less code, faster execution, and easier to write
in the first place. Here is likely what you have heard.

In this example, marketing expenses needs to be calculated as
5% over actuals. The method suggested is to copy data from
Actual to Budget, which duplicates every Actual block for
Budget. Then you wipe out the data in Budget. Then you set the
data with your calculation to make Budget 5% more than Actual.
It looks something like, excluding the FIX statements.

DATACOPY "Actual" to "Budget";
"Budget" = #Missing;
"Budget" = "Actual" * 1.05;

To reiterate, if you would run a calculation on Budget and no
blocks existed, it would likely do nothing. If the calculation
FIXes on Budget, and no blocks exist for Budget, it does
nothing. If it already has some of the needed blocks, the
calculation will appear to work on some of the data but not on
others. To get around this, people will copy all the data from
Actuals to Budget so all the needed blocks exist. Then they
will clear the data from Budget. Then they will loop through
Budget and run the logic. The result is this.

FIX([your fix statement], "Marketing Expenses")
 DATACOPY "Actual" to "Budget";
ENDFIX
FIX([your fix statement], "Actual")
 "Marketing Expenses" = #Missing;
ENDFIX

Does this work? Absolutely. Is it efficient? Not even close. A
significant reason for calculation performance is looping
through the same block more than once. Sometimes it is
necessary, but think of it this way. If you had 50 Excel
workbooks and you had to update all 50 of them. Would you open
each one and edit one cell, then open them again and update
another cell? No. You would open it and update all the cells,
close it, and never open it again. You want your calculation
to perform the same way. You want it to open a block, edit

everything in that block, and never open it again. I
understand that is not always possible, so I am not suggesting
this is a hard and fast rule.

This calculation, as it is, runs through the blocks 3 times.
Each fix represents a and is very inefficient. It also creates
blocks regardless of whether Marketing Expenses has data or
not.

Don’t use this method!

Using CREATEBLOCKONEQ – Hopefully
Nobody Teaches You
Another method is to use SET CREATEBLOCKONEQ in your FIX
statement. Using this means we don’t have to use DATACOPY and
we don’t have to set the result to null using #Missing. It
makes the calculation smaller and would look like this.

FIX([your fix statement], "Budget")
 SET CREATEBLOCKONEQ ON;
 "Marketing Expenses" = "Marketing Expenses"->"Actual" *
1.05;
 SET CREATEBLOCKONEQ OFF;
ENDFIX

This will work for you. It will create the blocks as they are
needed. But, it will likely take longer than the original
example. Why? Without this setting, the calculation will go
through every EXISTING block. It will calculate any block that
exists, but will skip the blocks that don’t exist and you will
get inconsistent results.

When we set CREATEBLOCKONEQ to ON, it will check every
possible block and if it needs to be created it will. The
problem with this is that unless your cube is freakishly
dense, it will do a lot more than it needs to. Think of
putting your car in 1st gear and driving on the interstate for

10 miles. You will go extremely slow and use an enormous
amount of gas compared to driving it 5th gear, in which you
would get there faster and use very little gas. That is what
CREATEBLOCKONEQ does.

Look at your cube statistics and check out the difference
between the number of blocks and the number of possible
blocks. This runs on all the possible blocks and is likely
millions, if not billions of blocks that have no data.

Since the performance on this is really bad, it is rarely
used. That said, if you need to run a calculation on a
specific combination, like 1 block, or 10 blocks, using this
is an easy way to minimize your effort and the additional time
by using this is not material, and the blocks have to be
created anyway. This would be like putting the car in 1st gear
and driving up your driveway. Not super- efficient, but it is
only 5 seconds, so who cares.

An Alternate Approach Nobody Talks
About
First, will this work in every situation? No. Will it work in
99.9% of them? Yep! This example assumed Scenario is a sparse
dimension.

We have established that if we fix on blocks that don’t exist,
nothing will happen. Is it necessary that we create the blocks
first, then calculate them? Absolutely not. We can create the
block by calculating it.

Blocks will get created IF the left side of the equation is a
sparse member. If you must have a cross dim operation, and the
left most member of the cross dim is sparse, it will create
the block. In the original example, we wanted to grow
Marketing Expenses 5% over the prior year. If we fix on
Actual, where all the blocks that we need grow the expense

exist, then we set Budget to 105% of Actual, the block will
get created. All of the blocks will get created if they don’t
already exist. If there is no block for Actual, then Budget
will be 0 anyway, so we don’t have to worry about if the right
blocks exist for Actual.

FIX([your fix statement], "Actual", "Marketing Expenses")
 "Budget" = "Marketing Expenses" * 1.05;
ENDFIX

If you think about this, we are running through all the Actual
blocks, and then we set the Budget to a 5% more than Actual.
Rather than fixing on the calculations, or destination, and
calculating the destination, we fix on the source, where the
blocks exist, and set the destination to a value. Since we
have a sparse member on the left side of the equation, and we
are FIXing on Actual, where all the blocks are, we will NOT be
skipping anything and you should get a total Budget of 5% more
than Actual.

Will this create too many blocks? Possibly. We may not have
Marketing Expenses in all the existing Actual blocks. We can
optimize this by adding a IF to check to see if Marketing
Expenses is either a 0 or #Missing. Rather than checking for
both, I just add a 0 to it and then check for 0. 0 + #Missing
is 0 and it is just a little more efficient to process and
write.

FIX([your fix statement], "Actual")
 "Marketing Expenses"(
 IF("Marketing Expenses" + 0 <> 0)
 "Budget"->"Marketing Expenses" = "Marketing Expenses" *
1.05;
)
 ENDFIX
ENDFIX

To summarize, we

FIX on Actual

Only calculate Budget if Marketing Expense is not zero
and not #Missing
Have a sparse member on the left side of the equation
Have a sparse member on the left most side of the cross
dimensional operator This will likely result in less
blocks created as it only creates blocks where Marketing
Expenses is #Missing or 0 but will create and calculate
any block need to be created at the same time. What is
the benefit of this? The calculation is easier to write,
it takes less time to write, and it is much more
efficient to execute.

Results Of Real-World A Dataset f The calculations are plain
Jane. I am not using threading or any other settings to keep
it simple and ensure I am comparing apples to apples.

The database I have has more data in the Plan scenario so I am
replicating the same logic but using different scenarios. I
need set the BlockCreationTest scenario to 5% more than the
OEP_Plan scenario, rather than the prior example of setting
Budget to 5% more than Actual. Different scenarios but the
exact same concept.

DATACOPY Method
The calculation to copy data to create blocks, set destination
to missing, then calculate the growth FIXing on the
destination, will look like this.

FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0))
 DATACOPY "OEP_Plan" TO "BlockCreationTest";
ENDFIX
FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),

 "BlockCreationTest")
 "Regular_Cases" = #Missing;
ENDFIX
FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "BlockCreationTest")
 "Regular_Cases" = "Regular_Cases"->"OEP_Plan" * 1.05;
ENDFIX

The data copy took 41 seconds. Updating the destination to
#Missing took 5 seconds. The calculation took 42 seconds. The
total time was 88 seconds and it created 66,724 blocks. This
went through the blocks 3 times.

FIX On Source And Calculate Destination
Method
This time, I just FIXed on the source, and used the blocks on
the source to create and calculate the destination. The
calculation looks like this.

FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "OEP_Plan")
 "Regular_Cases"(
 IF("Regular_Cases" + 0 <> 0)
 "BlockCreationTest"->"Regular_Cases" = "Regular_Cases" *
1.05;
 ENDIF
)
ENDFIX

This created slightly fewer blocks in 63,739. The difference
means that Regular Cases didn’t have a value in all the
existing source blocks. The calculation took 6 seconds. That
is an improvement of over 8,000%! This method created the

necessary blocks and calculated the correct values in 6
seconds compared to 89 seconds using the other method. It went
through the blocks one time.

Optimized DATACOPY
Just to be fair, I optimized the calculations for the DATACOPY
methodology. The example provided in the article that prompted
me to write this was inefficient. I wanted to squash any
comments that would suggest the DATACOPY is just as fast if it
was written efficiently.

FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "Regular_Cases")
 DATACOPY "OEP_Plan" TO "BlockCreationTest";
ENDFIX
FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "BlockCreationTest")
 "Regular_Cases" = #Missing;
ENDFIX
FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "BlockCreationTest")
 "Regular_Cases"(
 IF("Regular_Cases"->"OEP_Plan" + 0 <> 0)
 "Regular_Cases" = "Regular_Cases"->"OEP_Plan" * 1.05;
 ENDIF
)
ENDFIX

The results were better. The data copy took 6 seconds.
Updating the destination to #Missing stayed the same and
completed in 5 seconds. The calculation of BlockCreationTest

took 7 seconds.

That is still 18 seconds, which is 2.5 times slower than
FIXing on the source and calculating the destination. I don’t
know why you would ever need the step that sets everything to
#Missing because it would get overwritten with the third step,
but would be 0 anyway. Even if that step gets removed, this
method is still twice as fast.

CREATEBLOCKONEQ ON Method
Before I get into the results, take a look at these
statistics. The FIX statement runs on

13 Sources
23 Departments
2,382 Companies
25,001 Products

13 x 23 x 2,382 x 25,001 is 17,806,162,218 if my math is
correct. That is possible blocks that can exist. If you
remember, the calculations above created 66,724 and 63,739
blocks for the one without the if and with the if,
respectively. If we extrapolate out the results for a
calculation that took 6 seconds that iterated through 66,724
blocks (we know this because it created a block for every
source block that existed), to run through 17 billion blocks,
it will take an estimated 500 hours! Remember, turning this on
will go through ever possible block and if it needs to be
created it will create it. If not, it won’t. The calculation
is as follows.

FIX("FY18", "Regular_Cases", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "BlockCreationTest")
 SET CREATEBLOCKONEQ ON;
 "OEP_Working" = "OEP_Plan" * 1.05;

 SET CREATEBLOCKONEQ OFF;
ENDFIX

The calc had to be adjusted slightly because even with this
setting on, it only creates the block if a sparse member is
used on the left side of the equation. I moved OEP_Working
from the FIX to the left side of the equation and moved
BlockCreationTest to the FIX. I did this in good faith because
there is ONLY data in Working, but there is data in multiple
Scenarios, so this should run faster than if I left it the way
it was in the other calculations.

I stopped this calculation after 5 hours and it only created
223 blocks at that time. If I extrapolate that out, it would
take 1,500 hours to finish. Even though I only need to create
66k blocks, I have to go through 17B to figure out which ones
need to be created, verses fixing on the source and it only
running through 66K blocks.

To The Doubters
I get feedback all the time that this method isn’t possible
all the time. There are times when it isn’t possible, but in
30 years of doing this, I can think of maybe 5 times I had to
work around it. If you want to allocation a number based on
history, you fix on the history and set the destination equal
to the history * a cross dim to your rate. If you need to
allocation based on percentages entered, then you fix on where
the percentages are entered and set the destination to the
correct value, as the blocks are created when the rate is
entered. This doesn’t just apply to scenario to scenario block
creation. You may enter a rate at your entity for
eliminations, but not at the product level. You still are only
going to allocate down to the products that have budget, or
history, so you still can fix on where the products have data
and use the rate at no product to calculate your numbers.

If you are allocating the data or have a driver that requires

calculations to be created, it has to have some driver
somewhere that exists at the level you want to allocate FROM,
and if you have that, you can use this method.

I Accept Your Challenge
If you have a situation where you are having challenges with
this logic and think you have to use DATACOPY, challenge me to
come up with a way to do it. I don’t want you to EVER have to
use DATACOPY!

A Cautionary Tale
With all this said, is there a drawback? Yes and no. This will
always create the needed blocks. Keep in mind when you put a
sparse member on the left-hand side and if you don’t have your
FIX isolated to only what you need to calculate, you can
potentially create a lot more blocks than you want. You will
NEVER create a block at every possible block with this method
because if you FIX on something, it ONLY calculates where
blocks exist.

If you ran the following calculation on an empty database,
nothing would happen because there are no blocks that it would
execute the calculation on. To prove this, I cleared all the
blocks in the Scenario BlockCreationTest and ran the following
calculations.

FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "BlockCreationTest")
 "Regular_Cases" = 1;
ENDFIX

This ran in under a second and created no blocks because
BlockCreationTest has no blocks.

What Hasn’t Been Discussed
There are two other ways to create blocks.

CREATEBLOCK
First is the @CREATEBLOCK. You can pass a list of members to
this to create blocks. I have used this in some situations
where I needed to walk balanced to the next year and I wanted
to make sure the next year existed. This is just one example.
It did add time to the calculation, but wasn’t significant for
small datasets. A couple things to keep in mind.

You have to be extremely careful with this because you1.
can blow up your database if used incorrectly.
If you use this within a fix, you only have to pass the2.
member that is different than the block you are on.
In most situations, this isn’t necessary because of the3.
preferred method above.
It will, in most situations, still require an extra pass4.
of the blocks and negatively impact the calculation
speed.

Here is an example.

FIX("FY18", "OEP_Working", "USD", "c01",
 @Relative("Source", 0),
 @Relative("Total_Department", 0),
 @Relative("ComputerTech", 0),
 "OEP_Plan")
 "Regular_Cases"(
 IF("Regular_Cases" + 0 <> 0)
 @CREATEBLOCK("BlockCreationTest");
 ENDIF
)
ENDFIX

Comparing this to the other way to create blocks, this took 40
seconds and created the correct blocks. If you remove the if,
however, it will create every possible block combination

possible, which is why you have to be extremely careful with
this method.

Groovy
The other option is to use Groovy to create the blocks. It
would be safer, but probably slower than the @CREATEBLOCK
method and more complicated to write and I didn’t even bother
to test it.

My Hope
I hope you read this, understand it, and have a bullet proof
way to deal with block creation and a more efficient way than
you may have ever thought of or been taught. I feel so
strongly about this that I am more than happy to have a quick
conversation if you are finding it difficult to use it.

