
Adventures in Groovy – Part
40: Eliminating Data Sources
With The Groovy Calendar
Class
I am currently working on a migration of on-premise to cloud
project (going GREAT by the way). One of the things we are
working on is the change with the data integration. One of
the processes loads the number of working days to the
application from a source that provides it. “Why not use
Groovy,” I ask? It turns out to be a great question.

There are two concepts to cover. A few lines of Groovy using
a calendar class and the gridbuilder to save the data. This
could also be a dynamically generated calculation that updates
the data. Since this is used on an ASO cube, the example
below uses the gridbuilder option.

The Code Explained
This example will have a run time prompt for year, will
calculate the values for each month in the year selected and
store them to the appropriate account. The prompt and the
variables required are declared here.

/*RTPS {rtpYear} */
int iYear =
rtps.rtpYear.getEnteredValue().toString().substring(2).toInteg
er() + 2000
def sYear = rtps.rtpYear.getEnteredValue().toString()
Def values = []
Calendar calendar = GregorianCalendar.instance

Once this is setup, the calendar class will be used to
identify the working days. Working days here is defined as
any weekday in the month. These days are used to calculate

https://in2epbcs.com/2019/04/06/adventures-in-groovy-part-40-eliminating-data-sources-with-the-groovy-calendar-class/
https://in2epbcs.com/2019/04/06/adventures-in-groovy-part-40-eliminating-data-sources-with-the-groovy-calendar-class/
https://in2epbcs.com/2019/04/06/adventures-in-groovy-part-40-eliminating-data-sources-with-the-groovy-calendar-class/
https://in2epbcs.com/2019/04/06/adventures-in-groovy-part-40-eliminating-data-sources-with-the-groovy-calendar-class/

payroll accruals and monthly averages. Holidays are not
considered in the calculations that use this.

The following uses the calendar class to create a list
variable that will be passed to the gridbuilder later in the
script.

for (int currentMonth = 1; currentMonth <= 12; currentMonth++)
{
 Calendar startCal = new GregorianCalendar(iYear,
currentMonth,
calendar.getActualMinimum(GregorianCalendar.DAY_OF_MONTH))
 Calendar endCal = new GregorianCalendar(iYear, currentMonth,
calendar.getActualMaximum(GregorianCalendar.DAY_OF_MONTH))
 int workDays = 0
 startCal.upto(endCal) {Calendar it ->
 if((it[Calendar.DAY_OF_WEEK]).toString().toInteger() > 1
&& it[Calendar.DAY_OF_WEEK].toString().toInteger() <7)
 workDays += 1
 }
 def sMonth = Date.parse('MM', "$currentMonth").format(
'MMMM')
 values << workDays
 println "for the month of $sMonth we have $workDays working
days."
}

At this point, a list object has 12 values, one for each
month. This will be loaded to a specific POV that won’t
change. If the requirement was more dynamic, this example
could certainly be expanded to account for it. The last step
is to store the data back to the database. There are many
examples on the gribuilder in previous articles, so it won’t
be explained in detail.

Cube cube = operation.application.getCube("Plan1")
DataGridBuilder builder =
cube.getDataGridBuilder("MM/DD/YYYY")
builder.addPov($sYear, 'Local', 'Working', 'Plan', 'No
Entity')
builder.addColumn('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug’, 'Sep', 'Oct', 'Nov', 'Dec’)
builder.addRow(['Working Days'], values)
DataGridBuilder.Status status = new DataGridBuilder.Status()
builder.build(status).withCloseable { grid ->
 println("Total number of cells accepted:

$status.numAcceptedCells")
 println("Total number of cells rejected:

$status.numRejectedCells")
 println("First 100 rejected cells: $status.cellsRejected")
 // Save the data to the cube
 cube.saveGrid(grid)
 }

The Results
The log will provide some descent information. This can be
expanded for POV, user info, the time it took to process, but
as it is, this is what the log would produce. Remember, the
security of the user that runs this is used. If this is for a
forecast, for example, and the start month is April, the
accepted cells would only be nine. 3 cells would be rejected
because they are not writable.

for the month of January we have 21 working days.
for the month of February we have 21 working days.
for the month of March we have 22 working days.
for the month of April we have 22 working days.
for the month of May we have 20 working days.
for the month of June we have 22 working days.
for the month of July we have 22 working days.
for the month of August we have 21 working days.
for the month of September we have 22 working days.
for the month of October we have 21 working days.
for the month of November we have 21 working days.
for the month of December we have 22 working days.

Total number of cells accepted: 12
Total number of cells rejected: 0

The Calendar Class
Although not required in this example, there are all kinds of
things that this can be used for. Have you ever needed to
calculate the week of the year? The day of the week? How
about the days between two dates? You likely have come across
these things for WFP or CapEx at least. The calendar object
itself has a ton of useful cases and the object that is
returned is basically an array of information. If the object
is sent to the log with a println, all the values are
exposed. Of course, you can always google it, but it looks
like this.

java.util.GregorianCalendar[time=-62130585600000,areFieldsSet=
true,areAllFieldsSet=true,lenient=true,zone=sun.util.calendar.
ZoneInfo[id="UTC",offset=0,dstSavings=0,useDaylight=false,tran
sitions=0,lastRule=null],firstDayOfWeek=1,minimalDaysInFirstWe
ek=1,ERA=1,YEAR=1,MONTH=2,WEEK_OF_YEAR=10,WEEK_OF_MONTH=1,DAY_
OF_MONTH=2,DAY_OF_YEAR=61,DAY_OF_WEEK=4,DAY_OF_WEEK_IN_MONTH=1
,AM_PM=0,HOUR=0,HOUR_OF_DAY=0,MINUTE=0,SECOND=0,MILLISECOND=0,
ZONE_OFFSET=0,DST_OFFSET=0]

It would take pages to explain and provide examples of all
that can be done, which won’t be in this post. Here are some
ideas of uses.

use copyWith to duplicate an instance
use the format method to format the date as a month,
year, long date, etc.
use minus to subract two calendar dates from each other
(datediff)
use next and previous to increment days, months, or
years
use set to set a specific date

Last Call
Will this change the world? No. Is it useful? To some,
absolutely. The goal here is to just provide some information

on how to use the calendar class and give you some ideas of
what it could be used for. Manipulating dates and time has
always been a challenge in Essbase. It is better now with
some of the custom functions that have been exposed (and thank
goodness they did this on the cloud or we wouldn’t be able to
register custom functions). But, performance, complexity,
rolling through the same blocks multiple times, all can be
minimized with the ability to calculate this outside of
Essbase, pass it to a calculation, let Groovy do what it is
good at, and let Essbase handle what its strengths are.

To read about more uses, Google “Groovy Calendar” and take a
look at all the methods it has – pretty useful stuff.

You have any other thoughts? Post a comment. You know we
would love to hear from you.

