
Adventures in Groovy – Part
8: Customizing Data Maps and
Smart Pushes

Introduction
Groovy has the ability to execute Data Maps and Smart Pushes.
Data Maps are objects that define the data movement between
applications and are accessible globally. Smart Pushes are
Data Maps that are attached to a Data Form and can override
the dimensions settings. They are largely the same thing, but
defined separately inside of PBCS.

So, why execute these in Groovy rather than assign to a form
and call it a day?

The data push can be customized to push only data that1.
has changed, improving performance.
When a form is saved, all calculations are executed2.
first, and the Smart pushes are executed after all
calculations are finished. If Groovy is used and the
data push is done inside a Business Rule, the order of
operation can be a

calculation1.
data push2.
calculation3.
data push4.
etc5.

Since the Smart Push has a global limit of memory that3.
can be used, and multiple people are running them
through form saves, it is critical to make it as small
as possible to reduce the probability of hitting that
limit and increasing the odds of the Smart Pushes
failing.

https://in2epbcs.com/2018/02/12/adventures-in-groovy-part-8-customizing-data-maps-and-smart-pushes/
https://in2epbcs.com/2018/02/12/adventures-in-groovy-part-8-customizing-data-maps-and-smart-pushes/
https://in2epbcs.com/2018/02/12/adventures-in-groovy-part-8-customizing-data-maps-and-smart-pushes/

To date, I see the advantage of running a Smart Push (a Data
Map on a form) in that most of the dimensions are already
overridden and less overrides are required in the Groovy
logic. There is no difference in performance or the size of
what can be pushed between the two when executed from a Groovy
calculation. The advantage of using a generic Data Map is
that there is less effort in defining the form level Smart
Pushes, and once one Groovy calculation is written to override
all dimensions from a Data Map, it can be replicated easily to
all required forms.

To understand the memory issues and explanation of how it
differs from Data Maps and Smart Pushes, see PBCS Data Map /
Smart Push Has Data volume Limits.

Data Map
Executing a Data Map is very simple and can be done in one
line of code.

operation.application.getDataMap("Data Map
Name").execute(true)

Calling execute() on a DataMap would execute the named Data
Map (with no customization) and clearing the target location
before pushing data. Changing the true to false, or removing
it, would remove the clear and leave the data as is.

To override the the dimension settings and increase or
decrease the scope of what is used, the member names need to
be further defined. Every dimension’s scope can be changed,
or just the ones that require a change in scope can be
altered. The following changes the scope for the account,
scenario, version, and Entity dimensions.

operation.application.getDataMap("Data Map
Name").execute(["Account":"Net Income, Income, Expense",
"Scenario":"Budget", "Version":"Working", "Entity":"East
Region"], true)

http://www.in2hyperion.com/2018/01/27/pbcs-data-map-smart-push-has-data-volume-limits/
http://www.in2hyperion.com/2018/01/27/pbcs-data-map-smart-push-has-data-volume-limits/

Smart Push
The Smart Push works exactly the same, except the object
referenced is a Smart Push, and is obtained through the grid
object, not the application. Again, the likelihood that the
Smart Push is further scoped is high, so it is reasonable that
the dimensional parameters would be fewer as many of them
change based on the POV selected.

operation.grid.getSmartPush("Smart Push
Name").execute(["Account":"Min Bonus, Min Salary"])

One additional option is to define a Smart Push from a Data
Map in the Groovy script.

operation.application.getDataMap("Data Map
Name").createSmartPush().execute(["Account":"Min Bonus, Min
Salary"])

Error Trapping
When these are written, it is likely that the Smart Pushes and
Data Maps exist. One extra step to ensure the calculation
doesn’t fail is to verify their existence. For Smart Pushes,
verify that it is attached to the form.

//Data Map Example
if(operation.application.hasDataMap("Data Map Name"))

 operation.application.getDataMap("Data Map
Name").execute(true)
//Smart Push Example
if(operation.grid.hasSmartPush("Smart Push Name"))
 operation.grid.getSmartPush("Smart Push Name").execute()

Conclusion
Creating variables to use in these functions to change the
scope to only the rows and columns that have been edited, the
calculation would look like this. This is where I see the
biggest bang for your buck. To understand more about using

the grid iterator, read Adventures in Groovy Part 3: Acting On
Edited Cells. When a grid has hundreds of rows, only pushing
the data that has been edited can make a huge difference in
performance.

// Setup the variables to store the list of edited vendors and
periods
def lstVendors = []
def lstPeriods = []
// Iterate through only the cells that were changed and create
a list of changed vendors and periods
operation.grid.dataCellIterator({DataCell cell ->
cell.edited}).each{
 lstVendors.add(it.getMemberName("Vendor"))
 lstPeriods.add(it.getMemberName("Period"))
}
// Convert the lists to a comma delimited string with quotes
surrounding the members
String strVendors =
"""\"${lstVendors.unique().join('","')}\""""
String strPeriods =
"""\"${lstPeriods.unique().join('","')}\""""
// Execute the Smart Push with a change in scope to Vendor and
Period
if(operation.grid.hasSmartPush("GP_SmartPush") && lstVendors)
operation.grid.getSmartPush("GP_SmartPush").execute(["Vendor":
strVendors,"Period":strPeriods]

With any luck, you will see significant improvement, unless
they change every month of every row!

http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/
http://www.in2hyperion.com/2017/12/21/adventures-in-groovy-part-3-acting-on-edited-cells/

