
Adventures in Groovy – Part
13: Returning Errors (Data
Forms)

Introduction
One of the huge benefits that available in Groovy Calculations
is the ability to interact with a user, validate data, and act
on the validation. Now, we can interrupt form saves, stop Run
Time Prompts from continuing, and communicate information back
to the user. There are a number of functions for validation,
and they can be categorized functionally. Although they all
can be use somewhat interchangeably, the logical uses are

Data Form validation functions
addValidationError

RTP validation functions
validateRtp

Validation functions that are more open ended and can be
used just about anywhere

messageBundle
messageBundleLoader
throwVetoException

In this post, we will discuss one aspect of this, and probably
the simplest application, validating Run Time Prompts (RTP).

The MessageBundle
Before a few of the methods can be used, one must first
understand the MessageBundle and MessageBundleLoader methods.
To look at documentation, they might seem very complex, and a
maybe a little intimidating. The reality is that these are
just objects that hold the error messages. That is pretty
much the long of short of it. The messageBundle holds a map

https://in2epbcs.com/2018/03/19/adventures-in-groovy-part-13-returning-errors-data-forms/
https://in2epbcs.com/2018/03/19/adventures-in-groovy-part-13-returning-errors-data-forms/
https://in2epbcs.com/2018/03/19/adventures-in-groovy-part-13-returning-errors-data-forms/

(basically a lookup table that is two columns and n rows) of
the error ID and the description of the error you want to
display. If the application is consumed by users with
multiple languages, a messageBundle can be created for each
language. The messageBundleLoader allows you to identify
which bundle to use based on the user’s local. The example
below should answer any questions you have.

The Message Bundle
Think of this method as an array, or a table in Excel. It has
2 columns (ID and message). It can have an infinite amount of
rows. The syntax of this is “[id:message]”. For multiple
errors, the id:message is duplicated, separated by a comma,
like “[id,message,id:message]”. Here is an example of a
messageBundle with one error.

def mbUs = messageBundle(
["validation.InvalidCharacters":"Only alphanumeric characters
can be entered (a-z, 1-9)."])

And with two errors.

def mbUs = messageBundle(
["validation.InvalidCharacters":"Only alphanumeric characters
can be entered (a-z, 1-9).",
"validation.Negative":"A positive number is required."])

And with two errors in Spanish.

def mbSpanish = messageBundle(
["validation.InvalidCharacters":"Sólo se pueden introducir
caracteres alfanuméricos (a-z, 1-9)."],
["validation.Negative":"Se requiere un número positivo."])

This can be extended to hold all the error messages required
for the scope of the calculation in all the locales required.

The Message Bundle Loader
The messageBundleLoader is the piece that pulls either a
single, or multiple, messageBundles together to use in a

call. If only one language is required, it would look like
this.

def mbl = messageBundleLoader(["en":mbUs])

For multiple languages, or multiple messageBundles, they would
be concatenated together with commas. View a valid list of
locales to make sure the parameter in parenthesis is correctly
linked to the correct locale.

def mbl = messageBundleLoader(["en":mbUs", "es":mbSpanish])

Throw an Exception (Interrupt Form Save)
Here is where the cool stuff happens. see post about looping
through cells

If a validation error exists, an exception can be generated to
stop the form from saving. To do this, simply use the
throwVetoException method. This accepts 2 parameters. The
first is the messageBundlerLoader, and the second is the id
associated to the to be displayed. Using the example above,
and assuming the local is US, the following would stop the
form from saving and display a message of “Only alphanumeric
characters can be entered (a-z, 1-9).”

throwVetoException(mbl, "validation.InvalidCharacters")

Consolidated Example
The following example creates two error messages in two
languages. On form save, this will loop through all the cells
and throw an error if any value is negative.

def mbUs = messageBundle(
["validation.InvalidCharacters":"Only alphanumeric characters
can be entered (a-z, 1-9).",
"validation.Negative":"A positive number is required."])

def mbSpanish = messageBundle(
["validation.InvalidCharacters":"Sólo se pueden introducir

https://www.metamodpro.com/browser-language-codes
https://www.metamodpro.com/browser-language-codes

caracteres alfanuméricos (a-z, 1-9).",
"validation.Negative":"Se requiere un número positivo."])

def mbl = messageBundleLoader(["en" : mbUs,"es" : mbSpanish])

operation.grid.dataCellIterator.each {
 if(it.data < 0)
 throwVetoException(mbl, "validation.Negative")
 }

Wrap Up
It has been a long time since developers have had this kind of
control. The possibilities are only limited by your
imagination and business requirements, but there isn’t any
validation that can’t be done. Future posts will tackle
validating Run Time Prompts, and taking form validation one
step further by adding cell level tool-tips and color coding.

The last thing with these validation calculations is the
importance of when they are executed. The documentation I
have from Oracle states something slightly different, so I
don’t know if this is the way it is supposed to work, but in
my experience, where the rule runs is critical. Here is what
I am experiencing.

When the rule is set to Run Before Save, and there is a
validation error, the user can’t save the form and an
error messages is displayed in the correct locale. To
me, this is the experience that is expected.
When the rule is set to Run After Save (which is the way
it is documented), and there is a validation error, the
user receives an error, but the data is saved.

The difference in the above does provide some interesting
options. Let’s say that we have a form and users are required
to allocate an expense. If the expense is not allocated at
100%, the form can’t be saved. Assume that there is a rule
that the expense shouldn’t be allocated to more than 3 places,

but users should be warned if it is. In this case, if the
rule is set to run AFTER save, the user gets the message, but
the data is saved.

Either way, if the rule is executed before other rules on the
form, no subsequent form will fire if there is a validation
error.

