
Adventures in Groovy – Part
15: Returning Errors (RTP
Edition)

Introduction
One of the huge benefits that available in Groovy Calculations
is the ability to interact with a user, validate data, and act
on the validation. Now, we can interrupt form saves, stop Run
Time Prompts from continuing, and communicate information back
to the user.

This may sound repetitive if you have read part 13 and part
14, and you can skip to the code example to learn more about
run time prompt validation. If not, you must have an
understanding of the validation functions and the components
of the messageBundle. There are a number of functions for
validation, and they can be categorized functionally. Although
they all can be use somewhat interchangeably, the logical uses
are

Data Form validation functions
addValidationError

RTP validation functions
validateRtp

Validation functions that are more open ended and can be
used just about anywhere

messageBundle
messageBundleLoader
throwVetoException

In this post, we will discuss one aspect of this, and probably
the simplest application, validating Run Time Prompts (RTP).

https://in2epbcs.com/2018/04/02/adventures-in-groovy-part-15-returning-errors-rtp-edition/
https://in2epbcs.com/2018/04/02/adventures-in-groovy-part-15-returning-errors-rtp-edition/
https://in2epbcs.com/2018/04/02/adventures-in-groovy-part-15-returning-errors-rtp-edition/

The MessageBundle
Before a few of the methods can be used, one must first
understand the MessageBundle and MessageBundleLoader methods.
To look at documentation, they might seem very complex, and a
maybe a little intimidating. The reality is that these are
just objects that hold the error messages. That is pretty
much the long of short of it. The messageBundle holds a map
(basically a lookup table that is two columns and n rows) of
the error ID and the description of the error you want to
display. If the application is consumed by users with
multiple languages, a messageBundle can be created for each
language. The messageBundleLoader allows you to identify
which bundle to use based on the user’s local. The example
below should answer any questions you have.

The Message Bundle
Think of this method as an array, or a table in Excel. It has
2 columns (ID and message). It can have an infinite amount of
rows. The syntax of this is “[id,message]”. For multiple
errors, this is duplicated, separated by a comma, like
“[id,message],[id,message]”. Here is an example of a
messageBundle with one error.

def mbUs = messageBundle(
["validation.InvalidCharacters":"Only alphanumeric characters
can be entered (a-z, 1-9)."])

And with two errors.

def mbUs = messageBundle(
["validation.InvalidCharacters":"Only alphanumeric characters
can be entered (a-z, 1-9)."],
["validation.Negative":"A positive number is required."])

And with two errors in Spanish.

def mbSpanish = messageBundle(
["validation.InvalidCharacters":"Sólo se pueden introducir
caracteres alfanuméricos (a-z, 1-9)."],

["validation.Negative":"Se requiere un número positivo."])

This can be extended to hold all the error messages required
for the scope of the calculation.

The Message Bundle Loader
The messageBundleLoader is the piece that pulls either a
single, or multiple, messageBundles together to use in a
call. If only one language is required, it would look like
this.

[def mbl = messageBundleLoader(["en" : mbUs])

For multiple languages, it would include multiple
messageBundles

[def mbl = messageBundleLoader(["en" : mbUs],["en" :
mbSpanish])

Validate The Input
When a validation error exists, the prompt window will not
close, so it won’t let a user continue unless all the data
entered validates. Validations are only limited to your
knowledge of how to validate the input. Let Google be your
friend. You will be hard pressed to have a sitiation where
you can’t find an example of what you are trying to do. If
you aren’t familiar with “regex,” it will likely be included
in just about any Google search you do. The examples below
all use a regex string to validate the inputs.

To use a run time prompt in Groovy, they must be initiated.
This looks like a comment, but it acts differently when
prefaced by RTPS:

/*RTPS: {EmployeeName} {EmployeePhone} {EmployeeEmail} */

Next, we will create a messageBundle. Although it is simplier
than above, it is more than enough to demonstrate its use in
the validateRtp method. This creates an error for each of the

three validations in English.

def mbUs = messageBundle(["validation.invalidemail":"Email
address is invalid: {0}", "validation.invalidphone":"Phone
number is invalid: {0}",
"validation.invalidnamelength":"Employee name must be 5 to 40
characters: {0}"])
def mbl = messageBundleLoader(["en" : mbUs])

Now, the actionable stuff. The next 3 lines will validate the
3 run time prompts. If any of them fail, the RTP window will
remain open and the user can’t continue until they fix the
errors or cancel the action.

// Validate the Rtp values
validateRtp(rtps.EmployeeName,
{(5..40).contains(it.enteredValue.size()) }, mbl,
"validation.invalidnamelength", rtps.EmployeeName)
validateRtp(rtps.EmployeeEmail, /^.+@.+/, mbl,
"validation.invalidemail", rtps.EmployeeEmail.enteredValue)
validateRtp(rtps.EmployeePhone, /^(?:\+?1[-
]?)?\(?([0-9]{3})\)?[-]?([0-9]{3})[-]?([0-9]{4})$/, mbl,
"validation.invalidphone", rtps.EmployeePhone)

Putting it all together, we have the following.

/*RTPS: {EmployeeName} {EmployeePhone} {EmployeeEmail}
{Scenario} {Year} {Period} {Entity} {Version}*/
def mbUs = messageBundle(["validation.invalidemail":"Email
address is invalid: {0}", "validation.invalidphone":"Phone
number is invalid: {0}",
"validation.memberexists":"The member you have specified
already exists and cannot be created: {0}.",
"validation.invalidnamelength":"Employee name must be 5 to 40
characters: {0}"])
def mbl = messageBundleLoader(["en" : mbUs])

// Validate the Rtp values
validateRtp(rtps.EmployeeName,
{(5..40).contains(it.enteredValue.size()) }, mbl,
"validation.invalidnamelength", rtps.EmployeeName)
validateRtp(rtps.EmployeeEmail, /^.+@.+/, mbl,

"validation.invalidemail", rtps.EmployeeEmail.enteredValue)
validateRtp(rtps.EmployeePhone, /^(?:\+?1[-
]?)?\(?([0-9]{3})\)?[-]?([0-9]{3})[-]?([0-9]{4})$/, mbl,
"validation.invalidphone", rtps.EmployeePhone)

Wrap Up
It has been a long time since developers have had this kind of
control. The possibilities are only limited by your
imagination and business requirements, but there isn’t any
validation that can’t be done. This wraps up the 3 validation
methods.

Enjoy this new functionality. Don’t underestimate its
importance. This functionality can save your customers hours
of work and lots of frustration. Helping them input accurate
data improves the forecasting and budgeting process.
Implement these techniques and they will love you!

