
Adventures in Groovy – Part
12: Learning and Testing
Groovy Outside of PBCS

Introduction
For people that are new to Groovy/Java, testing functions that
Groovy provides can be a tedious and time consuming process.
Learning anything is. Trying to do this with the wrong tools
compounds it. I have seen some people give up and walk away
from trying to improve applications because they struggle with
the Groovy Calculations and the complexity it introduces to go
beyond some of the basics, just because they are using a
hammer when they need a screwdriver. For example, it is
simple to use a documented example and loop through the cells
on a form, but to utilize the Groovy/Java objects and methods
is the difference between using the default logic and taking
Planning to a whole new level. For those of us who are
learning, testing simple functions can be very painful inside
a Groovy Calculation.

I will by preface saying I am not a Groovy developer. I am
learning as I need functionality and I am trying to build a
foundation to be as productive as possible. Although Groovy
in PBCS doesn’t give developers full access to all the Java
libraries, much of the logic that is needed to develop new
functionality can be tested outside of PBCS. I have found
that as I learn more and require more non PBCS related
functionality, it is easier to test in the Groovy Console
rather than in a PBCS calculation. Some examples are

string functions like replace, regex, concatenate
mathematical functions
other manipulation that require the use of collections

https://in2epbcs.com/2018/03/14/adventures-in-groovy-part-12-learning-and-testing-groovy-outside-of-pbcs/
https://in2epbcs.com/2018/03/14/adventures-in-groovy-part-12-learning-and-testing-groovy-outside-of-pbcs/
https://in2epbcs.com/2018/03/14/adventures-in-groovy-part-12-learning-and-testing-groovy-outside-of-pbcs/

and hash tables

These can be used in looping through grid cells or building
evaluation rules on data entered. Hopefully, this is helpful
to those learning Groovy.

How To Get Started
Download Java SDK
Before Groovy can be used, Java has to be installed. Most
systems already have it. If not, the Java Development Kit can
be downloaded and installed. There is information about which
version of Groovy and Java are compatible at groovy-lang.org.
The Java SDK can be downloaded from Oracle.

Download An Editor
Groovy can be edited in many free and paid programs. Some of
them are more robust than others and provide things like
automatic code completion, color coding, and more advanced
features that aren’t likely required at this novice level.
They also increase the complexity for those that are
completely new to writing JAVA or Groovy. If you are
interested in this or need a longer term solution, check out
these editors.

IntelliJ IDEA
Netbeans IDE
SlickEdit
Groovy/Grails Tool Suite

For those who want to just get started with a simple and
supported editor to test some basic code, try the Apache
Groovy Console. The Windows Installer, the documentation, and
the SDK are available to download and install. Once
installed, you are ready to go! If you go to your Start menu
in Windows, you will see a folder for the version of Groovy
installed. In that folder click on Start GroovyConsole to
open the editor.

http://groovy-lang.org/install.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.jetbrains.com/idea/download/
https://netbeans.org/downloads/
https://www.slickedit.com/
https://spring.io/tools/ggts
http://groovy-lang.org/download.html
http://groovy-lang.org/download.html

Using The Groovy Console
Much of what is done in the Groovy calculations can’t be
accessed here. We don’t have grids, cells, or any of the
PBCS methods that we interact with in a Groovy Calculation.
Groovy can also access the REST API (outside of Groovy
Calculations), which opens up the ability to manage PBCS like
EPM Automate. I recently looped through the product catalogue
at BestBuy.com and built a hierarchy! This is a whole other
beast, but it is worth mentioning.

Before we jump into testing a script, here are a few things
that will be helpful using the Groovy Console.

The editor has two panes. The top pane is where the
script is developed and edited. The bottom pane is
where the results of the script are displayed when it is
executed.
The toolbar has some common functions. You can open and
save your scripts, redo/undo, and execute from icons in
this area.

Examples
I find it very helpful as I am learning, to test the logic and
the results in this console. Once validated, it will be moved
to the PBCS calculation and used appropriately. Here are some
examples where it might be useful, and hopefully the
separation of where to test what is highlighted.

Regex Example
There was a requirement on a form at a recent client where
they wanted to accept input. They used this to setup
properties in the HR system. The HR system could not accept
some characters, so the ask was to only allow alphanumeric
characters, a space, an underscore, and a dash. We had to add
validation to the run time prompt, as well as when the data
was updated in a form. Not being an expert with regex, I
didn’t want to test this in a calculation (update calc, run
calc, open job console, expand status, toggle between windows,
etc).

http://www.in2hyperion.com/wp-content/uploads/2018/02/GroovyConsole.png

So, I opened the Groovy Console and tested there. The end
result is below, but it was much easier to tweak the regex
syntax directly in the console, running it, and seeing the
result immediately, in one step. This was easy to see and
verify the output was void of any characters that were not
allowed. The length could be compared, pre and post character
removal, and was used to stop the save of the data.

String text = "This - text ! has \\ /allot # of % special %
characters"
println text
println text.length()
println text.replaceAll("[^a-zA-Z0-9 _-]", "")
println text.replaceAll("[^a-zA-Z0-9 _-]",
"").toString().length()
println text.length() == text.replaceAll("[^a-zA-Z0-9 _-]",
"").toString().length()

At this point, I proved out the regex functionality. I can
now go back to the Groovy Calculation and use this logic on
the variable returned from the PBCS function (whether it be an
RTP or a cell value) and remove the invalid characters or test
to see if there are any, and act accordingly. This is what it
would look like

String enteredValue = rtps.RTP_NewEmployee.getEnteredValue();
if(enteredValueAdj.length() == enteredValue.length())
{
def mbUs = messageBundle(["validation.InvalidChars":"You have
entered invalid characters. Only alphanumeric characters,
spaces, dashes, and underscores are accepted."])
def mbl = messageBundleLoader(["en" : mbUs])
throwVetoException(mbl, "validation.InvalidChars",
rtps.RTP_NewEmployee)
}

Converting Nested Collections
I was building a Data Map override from a POV, and it wasn’t
validating because some of the variables were collections that
included a nested collection. This whole concept was

completely new to me, and again, I didn’t want to have to go
through 3-5 steps to see if the result was returning a
delimited list of members that the Data Map would accept.
Since I had no initial idea how to accomplish this, I searched
and found examples that might accomplish what I wanted to
achieve. It took 5 to 10 iterations of examples to get to
what I wanted and understand how this worked. Updating a
script in the Groovy Console, running it, and seeing the
results in the same window proved much quicker to find a
solution.

In the solution below, I created a variable that replicated
the variable that PBCS that was returning (a list). I was
able to build out a few lines to eliminate the nested
collections and ported this over to my Groovy Calculation.

This proved out that the simple loop below would give me a
list I could pass to the Data Map, and was much quicker to
solve than trying to do this in PBCS.

def orig_list = [10, 20, [1, 2, [25, 50]], ['Groovy']]
def usable_list = []

orig_list.collectNested([]) {
 usable_list << it
 }
println usable_list
println '"' + usable_list.join('","') + '"'

The result of the executed script created two lines. At this
point, I could use this function in the Groovy Calculation by
replacing the orig_list with the object returned from the PBCS
function. I used the usable_list in the Data Map.

[10, 20, 1, 2, 25, 50, Groovy]
“10”,”20″,”1″,”2″,”25″,”50″,”Groovy”

Wrapping Up
These examples are great examples of how we can use a pair of
tools to create business logic efficiently. If you are a
seasoned java developer, much of this might seem ridiculous to
you and question why one would ever use something outside of
PBCS. I get it. Now that I know how these two function work,
I likely will not use the Groovy Console to write and test
this. But, as I continue to learn more and more, being able
to do this in something outside of PBCS has proven invaluable,
increased my productivity, and significantly reduced my
frustration.

If you are learning, or are an experienced Groovy developer,
please share your insights with the community and post a
comment!

