
Adventures in Groovy – Part
22: Looping Through Member
Descendants
There are a lot of reasons one might loop through children in
a Groovy Calculation. On my journeys with Groovy, I have run
into a few roadblocks where this has been helpful. Some of
these were related to limits in PBCS. Looping through sets of
members allowed us to get around some of the limitations.

Running Data Maps and Smart Pushes have limits on the
amount of data they can push when executed from a
business rule (100MB).
Using the clear option on Data Maps and Smart Pushes has
limits on the length of the string it can pass to do the
ASO clear (100000 bytes).
The Data Grid Builders have limits on the size of the
data grid that can be created (500,000 cells before
suppression).

All 3 of these situations create challenges and it is
necessary to break large requests into smaller chunks. An
example would be running the methods on one entity at a time,
no more than x products, or even splitting the accounts into
separate actions.

Possibilities
Before going into the guts of how to do this, be aware that
member functions in PBCS are available. Any of the following
can be used to create a list of members that can be iterated
through.

Ancestors (i)
Children (i)
Descendants (i)

https://in2epbcs.com/2018/05/03/adventures-in-groovy-part-22-looping-through-member-descendants/
https://in2epbcs.com/2018/05/03/adventures-in-groovy-part-22-looping-through-member-descendants/
https://in2epbcs.com/2018/05/03/adventures-in-groovy-part-22-looping-through-member-descendants/

Children (i)
Siblings (i)
Parents (i)
Level 0 Descendants

More complex logic could be developed to isolate members. For
example, all level 0 descendants of member Entity that have a
UDA of IgnoreCurrencyConversion could be created. It would
require additional logic that was covered in Part 11, but very
possible.

Global Process
In this example, Company was used to make the data movement
small enough that both the clear and the push were under the
limits stated above. The following loops through every
Company (Entity dimension) and executes a Data Map for each
currency (local and USD).

// Setup the query on the metadata
Cube cube = operation.application.getCube("GP")
Dimension companyDim =
operation.application.getDimension("Company", cube)
// Store the list of companies into a collection
def Companies =
companyDim.getEvaluatedMembers("ILvl0Descendants(Company)",
cube) as String[]

// Create a collection of the currencies
def Currencies = ["Local","USD"]

// Execute a Data Map on each company/currency
for (def i = 0; i < Companies.size(); i++) {
 def sCompanyItem = '"' + Companies[i] + '"'
 for (def iCurrency = 0; iCurrency < Currencies.size();
iCurrency++){

 operation.application.getDataMap("GP Form
Push").execute(["Company":Companies[i]

http://www.in2hyperion.com/2018/03/05/adventures-in-groovy-part-11-accessing-metadata-properties/

On Form Save
When there are large volumes of data that are accessed, it may
not be realistic to loop through all the children. In the
case of a product dimension where there are 30,000 members,
the overhead of looping through 30,000 grid builds will impact
the performance. However, including all the members might
push the grid size over the maximum cells allowed. In this
case, the need to iterate is necessary, but the volume of
products is not static from day to day. Explicitly defining
the number of products for each loop is not realistic. Below
creates a max product count and loops through all the products
in predefined chunks until all 30,000 products are executed.

def slist = [1,2,3,4,5,6,7,8,9,10]
// Define the volume of members to be included for each
process
int iRunCount = 4
// Get the total number of items in the Collection
int iTotal = slist.size()
// Identify the number of loops required to process everything
double dCount = (slist.size() / iRunCount)
int iCount = (int)dCount
// Identify the number of items in the last process (would be
be <= iRunCount)
int iRemainder = (slist.size() % iRunCount)

//Run through each grouping
for (i = 0; i <iCount; i++) {
 // loop through each of the members up to the grouping
(iRunCount)
 for (ii = 0; ii < iRunCount; ii++) {
 // Do the action
 // slist[i * iRunCount + ii] will give the item in the list
to use as needed
 print slist[i * iRunCount + ii] + " "
 }
}

// Run through the last group up to the number in the group

 for (i = 0; i < iRemainder; i++) {
 // Do the action
 print slist[iCount * iRunCount + i] + " "
 }

A Wrap
So, the concept is pretty simple. Now that we have the
ability to do things like this outside of typical planning
functions really opens up some possibilities. This example
ran post-save, but what about pre-save? How about changing
the color of cells with certain UDAs? What about taking other
properties managed in DRM that can be pushed to Planning that
would be useful? How about spotlighting specific products for
specific regions that are key success factors in
profitability?

Do you have an idea? Take one, leave one! Share it with us.

